Spaces:
Sleeping
Sleeping
import streamlit as st | |
import open_clip | |
import torch | |
import requests | |
from PIL import Image | |
from io import BytesIO | |
import time | |
import json | |
import numpy as np | |
import onnxruntime as ort | |
import cv2 | |
import chromadb | |
def load_clip_model(): | |
model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms('hf-hub:Marqo/marqo-fashionSigLIP') | |
tokenizer = open_clip.get_tokenizer('hf-hub:Marqo/marqo-fashionSigLIP') | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model.to(device) | |
return model, preprocess_val, tokenizer, device | |
clip_model, preprocess_val, tokenizer, device = load_clip_model() | |
def load_onnx_model(): | |
session = ort.InferenceSession("./accessary_weights.onnx") | |
return session | |
onnx_session = load_onnx_model() | |
def load_image_from_url(url, max_retries=3): | |
for attempt in range(max_retries): | |
try: | |
response = requests.get(url, timeout=10) | |
response.raise_for_status() | |
img = Image.open(BytesIO(response.content)).convert('RGB') | |
return img | |
except (requests.RequestException, Image.UnidentifiedImageError) as e: | |
if attempt < max_retries - 1: | |
time.sleep(1) | |
else: | |
return None | |
client = chromadb.PersistentClient(path="./accessaryDB") | |
collection = client.get_collection(name="accessary_items_ver2") | |
def get_image_embedding(image): | |
image_tensor = preprocess_val(image).unsqueeze(0).to(device) | |
with torch.no_grad(): | |
image_features = clip_model.encode_image(image_tensor) | |
image_features /= image_features.norm(dim=-1, keepdim=True) | |
return image_features.cpu().numpy() | |
def get_text_embedding(text): | |
text_tokens = tokenizer([text]).to(device) | |
with torch.no_grad(): | |
text_features = clip_model.encode_text(text_tokens) | |
text_features /= text_features.norm(dim=-1, keepdim=True) | |
return text_features.cpu().numpy() | |
def get_all_embeddings_from_collection(collection): | |
all_embeddings = collection.get(include=['embeddings'])['embeddings'] | |
return np.array(all_embeddings) | |
def get_metadata_from_ids(collection, ids): | |
results = collection.get(ids=ids) | |
return results['metadatas'] | |
def find_similar_images(query_embedding, collection, top_k=5): | |
database_embeddings = get_all_embeddings_from_collection(collection) | |
similarities = np.dot(database_embeddings, query_embedding.T).squeeze() | |
top_indices = np.argsort(similarities)[::-1][:top_k] | |
all_data = collection.get(include=['metadatas'])['metadatas'] | |
top_metadatas = [all_data[idx] for idx in top_indices] | |
results = [] | |
for idx, metadata in enumerate(top_metadatas): | |
results.append({ | |
'info': metadata, | |
'similarity': similarities[top_indices[idx]] | |
}) | |
return results | |
def detect_clothing_onnx(image): | |
input_image = np.array(image.resize((640, 640)), dtype=np.float32) | |
input_image = np.transpose(input_image, [2, 0, 1]) | |
input_image = np.expand_dims(input_image, axis=0) | |
input_image /= 255.0 | |
inputs = {onnx_session.get_inputs()[0].name: input_image} | |
outputs = onnx_session.run(None, inputs) | |
detections = outputs[0] | |
categories = [] | |
for detection in detections: | |
x1, y1, x2, y2, conf, cls = detection | |
category = str(int(cls)) | |
if category in ['Bracelets', 'Broches', 'belt', 'earring', 'maangtika', 'necklace', 'nose ring', 'ring', 'tiara']: | |
categories.append({ | |
'category': category, | |
'bbox': [int(x1), int(y1), int(x2), int(y2)], | |
'confidence': conf | |
}) | |
return categories | |
def crop_image(image, bbox): | |
return image.crop((bbox[0], bbox[1], bbox[2], bbox[3])) | |
# ์ธ์ ์ํ ์ด๊ธฐํ | |
if 'step' not in st.session_state: | |
st.session_state.step = 'input' | |
if 'query_image_url' not in st.session_state: | |
st.session_state.query_image_url = '' | |
if 'detections' not in st.session_state: | |
st.session_state.detections = [] | |
if 'selected_category' not in st.session_state: | |
st.session_state.selected_category = None | |
# Streamlit app | |
st.title("Advanced Fashion Search App") | |
# ๋จ๊ณ๋ณ ์ฒ๋ฆฌ | |
if st.session_state.step == 'input': | |
st.session_state.query_image_url = st.text_input("Enter image URL:", st.session_state.query_image_url) | |
if st.button("Detect Clothing"): | |
if st.session_state.query_image_url: | |
query_image = load_image_from_url(st.session_state.query_image_url) | |
if query_image is not None: | |
st.session_state.query_image = query_image | |
st.session_state.detections = detect_clothing_onnx(query_image) | |
if st.session_state.detections: | |
st.session_state.step = 'select_category' | |
else: | |
st.warning("No clothing items detected in the image.") | |
else: | |
st.error("Failed to load the image. Please try another URL.") | |
else: | |
st.warning("Please enter an image URL.") | |
# Update the 'select_category' step | |
elif st.session_state.step == 'select_category': | |
st.image(st.session_state.query_image, caption="Query Image", use_column_width=True) | |
st.subheader("Detected Clothing Items:") | |
for detection in st.session_state.detections: | |
col1, col2 = st.columns([1, 3]) | |
with col1: | |
st.write(f"{detection['category']} (Confidence: {detection['confidence']:.2f})") | |
with col2: | |
cropped_image = crop_image(st.session_state.query_image, detection['bbox']) | |
st.image(cropped_image, caption=detection['category'], use_column_width=True) | |
options = [f"{d['category']} (Confidence: {d['confidence']:.2f})" for d in st.session_state.detections] | |
selected_option = st.selectbox("Select a category to search:", options) | |
if st.button("Search Similar Items"): | |
st.session_state.selected_category = selected_option | |
st.session_state.step = 'show_results' | |
elif st.session_state.step == 'show_results': | |
st.image(st.session_state.query_image, caption="Query Image", use_column_width=True) | |
selected_detection = next(d for d in st.session_state.detections | |
if f"{d['category']} (Confidence: {d['confidence']:.2f})" == st.session_state.selected_category) | |
cropped_image = crop_image(st.session_state.query_image, selected_detection['bbox']) | |
st.image(cropped_image, caption="Cropped Image", use_column_width=True) | |
query_embedding = get_image_embedding(cropped_image) | |
similar_images = find_similar_images(query_embedding, collection) | |
st.subheader("Similar Items:") | |
for img in similar_images: | |
col1, col2 = st.columns(2) | |
with col1: | |
st.image(img['info']['image_url'], use_column_width=True) | |
with col2: | |
st.write(f"Name: {img['info']['name']}") | |
st.write(f"Brand: {img['info']['brand']}") | |
st.write(f"Category: {img['info']['category']}") | |
st.write(f"Price: {img['info']['price']}") | |
st.write(f"Discount: {img['info']['discount']}%") | |
st.write(f"Similarity: {img['similarity']:.2f}") | |
if st.button("Start New Search"): | |
st.session_state.step = 'input' | |
st.session_state.query_image_url = '' | |
st.session_state.detections = [] | |
st.session_state.selected_category = None | |
else: # Text search | |
query_text = st.text_input("Enter search text:") | |
if st.button("Search by Text"): | |
if query_text: | |
text_embedding = get_text_embedding(query_text) | |
similar_images = find_similar_images(text_embedding, collection) | |
st.subheader("Similar Items:") | |
for img in similar_images: | |
col1, col2 = st.columns(2) | |
with col1: | |
st.image(img['info']['image_url'], use_column_width=True) | |
with col2: | |
st.write(f"Name: {img['info']['name']}") | |
st.write(f"Brand: {img['info']['brand']}") | |
st.write(f"Category: {img['info']['category']}") | |
st.write(f"Price: {img['info']['price']}") | |
st.write(f"Discount: {img['info']['discount']}%") | |
st.write(f"Similarity: {img['similarity']:.2f}") | |
else: | |
st.warning("Please enter a search text.") |