Create db_multimodal_create.py
Browse files- db_multimodal_create.py +398 -0
db_multimodal_create.py
ADDED
@@ -0,0 +1,398 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import chromadb
|
2 |
+
import logging
|
3 |
+
import open_clip
|
4 |
+
import torch
|
5 |
+
from PIL import Image
|
6 |
+
import numpy as np
|
7 |
+
from transformers import pipeline
|
8 |
+
import requests
|
9 |
+
import io
|
10 |
+
import json
|
11 |
+
import uuid
|
12 |
+
from concurrent.futures import ThreadPoolExecutor
|
13 |
+
from tqdm import tqdm
|
14 |
+
import os
|
15 |
+
from io import BytesIO
|
16 |
+
from chromadb.utils.embedding_functions import OpenCLIPEmbeddingFunction
|
17 |
+
from chromadb.utils.data_loaders import ImageLoader
|
18 |
+
|
19 |
+
# ๋ก๊น
์ค์
|
20 |
+
logging.basicConfig(
|
21 |
+
level=logging.INFO,
|
22 |
+
format='%(asctime)s - %(levelname)s - %(message)s',
|
23 |
+
handlers=[
|
24 |
+
logging.FileHandler('fashion_db_creation.log'),
|
25 |
+
logging.StreamHandler()
|
26 |
+
]
|
27 |
+
)
|
28 |
+
logger = logging.getLogger(__name__)
|
29 |
+
|
30 |
+
def load_models():
|
31 |
+
try:
|
32 |
+
logger.info("Loading models...")
|
33 |
+
# CLIP ๋ชจ๋ธ
|
34 |
+
model, _, preprocess_val = open_clip.create_model_and_transforms('hf-hub:Marqo/marqo-fashionSigLIP')
|
35 |
+
|
36 |
+
# ์ธ๊ทธ๋ฉํ
์ด์
๋ชจ๋ธ
|
37 |
+
segmenter = pipeline(model="mattmdjaga/segformer_b2_clothes")
|
38 |
+
|
39 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
40 |
+
model.to(device)
|
41 |
+
|
42 |
+
# ์ด๋ฏธ์ง ์ ์ฒ๋ฆฌ๋ฅผ ์ํ transforms ์ถ๊ฐ
|
43 |
+
from torchvision import transforms
|
44 |
+
resize_transform = transforms.Compose([
|
45 |
+
transforms.Resize((224, 224)), # CLIP ์
๋ ฅ ํฌ๊ธฐ์ ๋ง์ถค
|
46 |
+
transforms.ToTensor(),
|
47 |
+
])
|
48 |
+
|
49 |
+
return model, preprocess_val, segmenter, device, resize_transform
|
50 |
+
except Exception as e:
|
51 |
+
logger.error(f"Error loading models: {e}")
|
52 |
+
raise
|
53 |
+
|
54 |
+
def process_segmentation(image, segmenter):
|
55 |
+
"""Segmentation processing"""
|
56 |
+
try:
|
57 |
+
output = segmenter(image)
|
58 |
+
|
59 |
+
if not output:
|
60 |
+
logger.warning("No segments found in image")
|
61 |
+
return None
|
62 |
+
|
63 |
+
segment_sizes = [np.sum(seg['mask']) for seg in output]
|
64 |
+
|
65 |
+
if not segment_sizes:
|
66 |
+
return None
|
67 |
+
|
68 |
+
largest_idx = np.argmax(segment_sizes)
|
69 |
+
mask = output[largest_idx]['mask']
|
70 |
+
|
71 |
+
if not isinstance(mask, np.ndarray):
|
72 |
+
mask = np.array(mask)
|
73 |
+
|
74 |
+
if len(mask.shape) > 2:
|
75 |
+
mask = mask[:, :, 0]
|
76 |
+
|
77 |
+
mask = mask.astype(float)
|
78 |
+
|
79 |
+
logger.info(f"Successfully created mask with shape {mask.shape}")
|
80 |
+
return mask
|
81 |
+
|
82 |
+
except Exception as e:
|
83 |
+
logger.error(f"Segmentation error: {str(e)}")
|
84 |
+
return None
|
85 |
+
|
86 |
+
def load_image_from_url(url, max_retries=3):
|
87 |
+
for attempt in range(max_retries):
|
88 |
+
try:
|
89 |
+
response = requests.get(url, timeout=10)
|
90 |
+
response.raise_for_status()
|
91 |
+
img = Image.open(BytesIO(response.content)).convert('RGB')
|
92 |
+
return img
|
93 |
+
except Exception as e:
|
94 |
+
logger.warning(f"Attempt {attempt + 1} failed: {str(e)}")
|
95 |
+
if attempt < max_retries - 1:
|
96 |
+
time.sleep(1)
|
97 |
+
else:
|
98 |
+
logger.error(f"Failed to load image from {url} after {max_retries} attempts")
|
99 |
+
return None
|
100 |
+
|
101 |
+
def extract_features(image, mask, model, preprocess_val, device):
|
102 |
+
"""Advanced feature extraction with mask-based attention"""
|
103 |
+
try:
|
104 |
+
img_array = np.array(image)
|
105 |
+
mask = np.expand_dims(mask, axis=2)
|
106 |
+
mask_3channel = np.repeat(mask, 3, axis=2)
|
107 |
+
|
108 |
+
# 1. ์๋ณธ ์ด๋ฏธ์ง์์ ํน์ง ์ถ์ถ
|
109 |
+
image_tensor_original = preprocess_val(image).unsqueeze(0).to(device)
|
110 |
+
|
111 |
+
# 2. ๋ง์คํฌ๋ ์ด๋ฏธ์ง(ํฐ์ ๋ฐฐ๊ฒฝ) ํน์ง ์ถ์ถ
|
112 |
+
masked_img_white = img_array * mask_3channel + (1 - mask_3channel) * 255
|
113 |
+
image_masked_white = Image.fromarray(masked_img_white.astype(np.uint8))
|
114 |
+
image_tensor_masked = preprocess_val(image_masked_white).unsqueeze(0).to(device)
|
115 |
+
|
116 |
+
# 3. ์๋ฅ ๋ถ๋ถ๋ง ํฌ๋กญํ ๋ฒ์ ํน์ง ์ถ์ถ
|
117 |
+
bbox = get_bbox_from_mask(mask) # ๋ง์คํฌ๋ก๋ถํฐ ๊ฒฝ๊ณ์์ ์ถ์ถ
|
118 |
+
cropped_img = crop_and_resize(img_array * mask_3channel, bbox)
|
119 |
+
image_cropped = Image.fromarray(cropped_img.astype(np.uint8))
|
120 |
+
image_tensor_cropped = preprocess_val(image_cropped).unsqueeze(0).to(device)
|
121 |
+
|
122 |
+
with torch.no_grad():
|
123 |
+
# ์ธ ๊ฐ์ง ๋ฒ์ ์ ํน์ง ์ถ์ถ
|
124 |
+
features_original = model.encode_image(image_tensor_original)
|
125 |
+
features_masked = model.encode_image(image_tensor_masked)
|
126 |
+
features_cropped = model.encode_image(image_tensor_cropped)
|
127 |
+
|
128 |
+
# ๊ฐ์ค์น๋ฅผ ์ฌ์ฉํ ํน์ง ๊ฒฐํฉ
|
129 |
+
combined_features = (
|
130 |
+
0.2 * features_original +
|
131 |
+
0.3 * features_masked +
|
132 |
+
0.5 * features_cropped
|
133 |
+
)
|
134 |
+
|
135 |
+
# ์ ๊ทํ
|
136 |
+
combined_features /= combined_features.norm(dim=-1, keepdim=True)
|
137 |
+
|
138 |
+
return combined_features.cpu().numpy().flatten()
|
139 |
+
|
140 |
+
except Exception as e:
|
141 |
+
logger.error(f"Feature extraction error: {e}")
|
142 |
+
return None
|
143 |
+
|
144 |
+
def get_bbox_from_mask(mask):
|
145 |
+
"""๋ง์คํฌ๋ก๋ถํฐ ๊ฒฝ๊ณ์์ ์ขํ ์ถ์ถ"""
|
146 |
+
rows = np.any(mask, axis=1)
|
147 |
+
cols = np.any(mask, axis=0)
|
148 |
+
rmin, rmax = np.where(rows)[0][[0, -1]]
|
149 |
+
cmin, cmax = np.where(cols)[0][[0, -1]]
|
150 |
+
# ์ฌ์ ๊ณต๊ฐ ์ถ๊ฐ
|
151 |
+
padding = 10
|
152 |
+
rmin = max(rmin - padding, 0)
|
153 |
+
rmax = min(rmax + padding, mask.shape[0])
|
154 |
+
cmin = max(cmin - padding, 0)
|
155 |
+
cmax = min(cmax + padding, mask.shape[1])
|
156 |
+
return rmin, rmax, cmin, cmax
|
157 |
+
|
158 |
+
def crop_and_resize(image, bbox):
|
159 |
+
"""๊ฒฝ๊ณ์์๋ก ์ด๋ฏธ์ง ํฌ๋กญ ๋ฐ ๋ฆฌ์ฌ์ด์ฆ"""
|
160 |
+
rmin, rmax, cmin, cmax = bbox
|
161 |
+
cropped = image[rmin:rmax, cmin:cmax]
|
162 |
+
# PIL์ ์ฌ์ฉํ์ฌ ์ ์ฌ๊ฐํ์ผ๋ก ๋ฆฌ์ฌ์ด์ฆ
|
163 |
+
size = max(cropped.shape[:2])
|
164 |
+
square_img = np.full((size, size, 3), 255, dtype=np.uint8)
|
165 |
+
start_h = (size - cropped.shape[0]) // 2
|
166 |
+
start_w = (size - cropped.shape[1]) // 2
|
167 |
+
square_img[start_h:start_h+cropped.shape[0],
|
168 |
+
start_w:start_w+cropped.shape[1]] = cropped
|
169 |
+
return square_img
|
170 |
+
|
171 |
+
def process_item(item, model, preprocess_val, segmenter, device, resize_transform):
|
172 |
+
"""Process single item from JSON data"""
|
173 |
+
try:
|
174 |
+
# ์ด๋ฏธ์ง URL ์ถ์ถ
|
175 |
+
if '์ด๋ฏธ์ง ๋งํฌ' in item:
|
176 |
+
image_url = item['์ด๋ฏธ์ง ๋งํฌ']
|
177 |
+
elif '์ด๋ฏธ์ง URL' in item:
|
178 |
+
image_url = item['์ด๋ฏธ์ง URL']
|
179 |
+
else:
|
180 |
+
logger.warning(f"No image URL found in item")
|
181 |
+
return None
|
182 |
+
|
183 |
+
# ๋ฉํ๋ฐ์ดํฐ ์์ฑ
|
184 |
+
metadata = create_metadata(item)
|
185 |
+
|
186 |
+
# ์ด๋ฏธ์ง ๋ค์ด๋ก๋
|
187 |
+
image = load_image_from_url(image_url)
|
188 |
+
if image is None:
|
189 |
+
logger.warning(f"Failed to load image from {image_url}")
|
190 |
+
return None
|
191 |
+
|
192 |
+
# ์ธ๊ทธ๋ฉํ
์ด์
์ํ
|
193 |
+
mask = process_segmentation(image, segmenter)
|
194 |
+
if mask is None:
|
195 |
+
logger.warning(f"Failed to create segmentation mask for {image_url}")
|
196 |
+
return None
|
197 |
+
|
198 |
+
# ์๋ก์ด ํน์ง ์ถ์ถ ๋ฐฉ์ ์ ์ฉ
|
199 |
+
try:
|
200 |
+
features = extract_features(image, mask, model, preprocess_val, device)
|
201 |
+
if features is None:
|
202 |
+
raise ValueError("Feature extraction failed")
|
203 |
+
|
204 |
+
# ๋๋ฒ๊น
์ฉ ์ด๋ฏธ์ง ์ ์ฅ (์ ํ์ฌํญ)
|
205 |
+
# save_debug_images(image, mask, image_url)
|
206 |
+
|
207 |
+
except Exception as e:
|
208 |
+
logger.error(f"Feature extraction failed for {image_url}: {str(e)}")
|
209 |
+
return None
|
210 |
+
|
211 |
+
return {
|
212 |
+
'id': metadata['product_id'],
|
213 |
+
'embedding': features.tolist(),
|
214 |
+
'metadata': metadata,
|
215 |
+
'image_uri': image_url
|
216 |
+
}
|
217 |
+
|
218 |
+
except Exception as e:
|
219 |
+
logger.error(f"Error processing item: {str(e)}")
|
220 |
+
return None
|
221 |
+
|
222 |
+
# ๋๋ฒ๊น
์ฉ ์ด๋ฏธ์ง ์ ์ฅ ํจ์ (์ ํ์ฌํญ)
|
223 |
+
def save_debug_images(image, mask, url):
|
224 |
+
try:
|
225 |
+
debug_dir = "debug_images"
|
226 |
+
os.makedirs(debug_dir, exist_ok=True)
|
227 |
+
|
228 |
+
# URL์์ ํ์ผ๋ช
์ถ์ถ
|
229 |
+
filename = url.split('/')[-1].split('?')[0]
|
230 |
+
|
231 |
+
# ์๋ณธ, ๋ง์คํฌ, ์ฒ๋ฆฌ๋ ์ด๋ฏธ์ง ์ ์ฅ
|
232 |
+
image.save(f"{debug_dir}/original_{filename}")
|
233 |
+
|
234 |
+
mask_img = Image.fromarray((mask * 255).astype(np.uint8))
|
235 |
+
mask_img.save(f"{debug_dir}/mask_{filename}")
|
236 |
+
|
237 |
+
except Exception as e:
|
238 |
+
logger.warning(f"Failed to save debug images: {str(e)}")
|
239 |
+
|
240 |
+
def create_metadata(item):
|
241 |
+
"""Create standardized metadata from different JSON formats"""
|
242 |
+
metadata = {}
|
243 |
+
|
244 |
+
# ์ํ ID ์ฒ๋ฆฌ ๊ฐ์
|
245 |
+
if '๏ปฟ์ํ ID' in item: # ๋ฌด์ ์ฌ ํ์
|
246 |
+
metadata['product_id'] = item['๏ปฟ์ํ ID']
|
247 |
+
else:
|
248 |
+
# 11๋ฒ๊ฐ/G๋ง์ผ์ ๊ฒฝ์ฐ ์ํ๋ช
๊ณผ URL๋ก ์ ๋ํฌํ ID ์์ฑ
|
249 |
+
unique_string = f"{item.get('์ํ๋ช
', '')}{item.get('์ด๋ฏธ์ง URL', '')}"
|
250 |
+
metadata['product_id'] = str(hash(unique_string))
|
251 |
+
|
252 |
+
# ๋๋จธ์ง ๋ฉํ๋ฐ์ดํฐ ์ฒ๋ฆฌ
|
253 |
+
metadata['brand'] = item.get('๋ธ๋๋๋ช
', 'unknown')
|
254 |
+
metadata['name'] = item.get('์ ํ๋ช
') or item.get('์ํ๋ช
', 'unknown')
|
255 |
+
metadata['price'] = (item.get('์ ๊ฐ') or item.get('๊ฐ๊ฒฉ') or
|
256 |
+
item.get('ํ๋งค๊ฐ', 'unknown'))
|
257 |
+
metadata['discount'] = item.get('ํ ์ธ์จ', 'unknown')
|
258 |
+
|
259 |
+
if '์นดํ
๊ณ ๋ฆฌ' in item:
|
260 |
+
if isinstance(item['์นดํ
๊ณ ๋ฆฌ'], list):
|
261 |
+
metadata['category'] = '/'.join(item['์นดํ
๊ณ ๋ฆฌ'])
|
262 |
+
else:
|
263 |
+
metadata['category'] = item['์นดํ
๊ณ ๋ฆฌ']
|
264 |
+
else:
|
265 |
+
# 11๋ฒ๊ฐ/G๋ง์ผ์ ๊ฒฝ์ฐ ์ํ๋ช
์์ ์นดํ
๊ณ ๋ฆฌ ์ถ์ถ ์๋
|
266 |
+
name = metadata['name'].lower()
|
267 |
+
categories = ['์ํผ์ค', '์
์ธ ', '๋ธ๋ผ์ฐ์ค', '๋ํธ', '๊ฐ๋๊ฑด',
|
268 |
+
'์ค์ปคํธ', 'ํฌ์ธ ', '์
์
', '์์ฐํฐ', '์์ผ']
|
269 |
+
found_categories = [cat for cat in categories if cat in name]
|
270 |
+
metadata['category'] = '/'.join(found_categories) if found_categories else 'unknown'
|
271 |
+
|
272 |
+
metadata['image_url'] = (item.get('์ด๋ฏธ์ง ๋งํฌ') or
|
273 |
+
item.get('์ด๋ฏธ์ง URL', 'unknown'))
|
274 |
+
|
275 |
+
# ์ผํ๋ชฐ ์ถ์ฒ ์ถ๊ฐ
|
276 |
+
if '์ด๋ฏธ์ง ๋งํฌ' in item:
|
277 |
+
metadata['source'] = 'musinsa'
|
278 |
+
elif 'cdn.011st.com' in metadata['image_url']:
|
279 |
+
metadata['source'] = '11st'
|
280 |
+
elif 'gmarket' in metadata['image_url']:
|
281 |
+
metadata['source'] = 'gmarket'
|
282 |
+
else:
|
283 |
+
metadata['source'] = 'unknown'
|
284 |
+
|
285 |
+
return metadata
|
286 |
+
|
287 |
+
def create_multimodal_fashion_db(json_files):
|
288 |
+
try:
|
289 |
+
logger.info("Starting multimodal fashion database creation")
|
290 |
+
|
291 |
+
# ๋ชจ๋ธ ๋ก๋
|
292 |
+
model, preprocess_val, segmenter, device, resize_transform = load_models()
|
293 |
+
|
294 |
+
# ChromaDB ์ค์
|
295 |
+
client = chromadb.PersistentClient(path="./fashion_multimodal_db")
|
296 |
+
|
297 |
+
# Multimodal collection ์์ฑ
|
298 |
+
embedding_function = OpenCLIPEmbeddingFunction()
|
299 |
+
data_loader = ImageLoader()
|
300 |
+
|
301 |
+
try:
|
302 |
+
client.delete_collection("fashion_multimodal")
|
303 |
+
logger.info("Deleted existing collection")
|
304 |
+
except:
|
305 |
+
logger.info("No existing collection to delete")
|
306 |
+
|
307 |
+
collection = client.create_collection(
|
308 |
+
name="fashion_multimodal",
|
309 |
+
embedding_function=embedding_function,
|
310 |
+
data_loader=data_loader,
|
311 |
+
metadata={"description": "Fashion multimodal collection with advanced feature extraction"}
|
312 |
+
)
|
313 |
+
|
314 |
+
# ์ฒ๋ฆฌ ๊ฒฐ๊ณผ ํต๊ณ
|
315 |
+
stats = {
|
316 |
+
'total_processed': 0,
|
317 |
+
'successful': 0,
|
318 |
+
'failed': 0,
|
319 |
+
'feature_extraction_failed': 0
|
320 |
+
}
|
321 |
+
|
322 |
+
# JSON ํ์ผ๋ค ์ฒ๋ฆฌ
|
323 |
+
for json_file in json_files:
|
324 |
+
with open(json_file, 'r', encoding='utf-8') as f:
|
325 |
+
data = json.load(f)
|
326 |
+
|
327 |
+
logger.info(f"Processing {len(data)} items from {json_file}")
|
328 |
+
|
329 |
+
with ThreadPoolExecutor(max_workers=4) as executor:
|
330 |
+
futures = []
|
331 |
+
for item in data:
|
332 |
+
future = executor.submit(
|
333 |
+
process_item,
|
334 |
+
item, model, preprocess_val, segmenter, device, resize_transform
|
335 |
+
)
|
336 |
+
futures.append(future)
|
337 |
+
|
338 |
+
processed_items = []
|
339 |
+
for future in tqdm(futures, desc=f"Processing {json_file}"):
|
340 |
+
stats['total_processed'] += 1
|
341 |
+
result = future.result()
|
342 |
+
|
343 |
+
if result is not None:
|
344 |
+
processed_items.append(result)
|
345 |
+
stats['successful'] += 1
|
346 |
+
else:
|
347 |
+
stats['failed'] += 1
|
348 |
+
|
349 |
+
# ๋ฐฐ์น๋ก ๋ฐ์ดํฐ๋ฒ ์ด์ค์ ์ถ๊ฐ
|
350 |
+
if processed_items:
|
351 |
+
try:
|
352 |
+
collection.add(
|
353 |
+
ids=[item['id'] for item in processed_items],
|
354 |
+
embeddings=[item['embedding'] for item in processed_items],
|
355 |
+
metadatas=[item['metadata'] for item in processed_items],
|
356 |
+
uris=[item['image_uri'] for item in processed_items]
|
357 |
+
)
|
358 |
+
except Exception as e:
|
359 |
+
logger.error(f"Failed to add batch to collection: {str(e)}")
|
360 |
+
stats['failed'] += len(processed_items)
|
361 |
+
stats['successful'] -= len(processed_items)
|
362 |
+
|
363 |
+
# ์ต์ข
ํต๊ณ ์ถ๋ ฅ
|
364 |
+
logger.info("Processing completed:")
|
365 |
+
logger.info(f"Total processed: {stats['total_processed']}")
|
366 |
+
logger.info(f"Successful: {stats['successful']}")
|
367 |
+
logger.info(f"Failed: {stats['failed']}")
|
368 |
+
|
369 |
+
return stats['successful'] > 0
|
370 |
+
|
371 |
+
except Exception as e:
|
372 |
+
logger.error(f"Database creation error: {str(e)}")
|
373 |
+
return False
|
374 |
+
|
375 |
+
if __name__ == "__main__":
|
376 |
+
json_files = [
|
377 |
+
'./musinsa_ranking_images_category_0920.json',
|
378 |
+
'./11st/11st_bagaccessory_20241017_172846.json',
|
379 |
+
'./11st/11st_best_abroad_bagaccessory_20241017_173300.json',
|
380 |
+
'./11st/11st_best_abroad_fashion_20241017_173144.json',
|
381 |
+
'./11st/11st_best_abroad_luxury_20241017_173343.json',
|
382 |
+
'./11st/11st_best_men_20241017_172534.json',
|
383 |
+
'./11st/11st_best_women_20241017_172127.json',
|
384 |
+
'./gmarket/gmarket_best_accessory_20241015_155921.json',
|
385 |
+
'./gmarket/gmarket_best_bag_20241015_155811.json',
|
386 |
+
'./gmarket/gmarket_best_brand_20241015_155530.json',
|
387 |
+
'./gmarket/gmarket_best_casual_20241015_155421.json',
|
388 |
+
'./gmarket/gmarket_best_men_20241015_155025.json',
|
389 |
+
'./gmarket/gmarket_best_shoe_20241015_155613.json',
|
390 |
+
'./gmarket/gmarket_best_women_20241015_154206.json'
|
391 |
+
]
|
392 |
+
|
393 |
+
success = create_multimodal_fashion_db(json_files)
|
394 |
+
|
395 |
+
if success:
|
396 |
+
print("Successfully created multimodal fashion database!")
|
397 |
+
else:
|
398 |
+
print("Failed to create database. Check the logs for details.")
|