File size: 15,114 Bytes
466ea14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
import chromadb
import logging
import open_clip
import torch
from PIL import Image
import numpy as np
from transformers import pipeline
import requests
import io
import json
import uuid
from concurrent.futures import ThreadPoolExecutor
from tqdm import tqdm
import os
from io import BytesIO
from chromadb.utils.embedding_functions import OpenCLIPEmbeddingFunction
from chromadb.utils.data_loaders import ImageLoader

# ๋กœ๊น… ์„ค์ •
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - %(message)s',
    handlers=[
        logging.FileHandler('fashion_db_creation.log'),
        logging.StreamHandler()
    ]
)
logger = logging.getLogger(__name__)

def load_models():
    try:
        logger.info("Loading models...")
        # CLIP ๋ชจ๋ธ
        model, _, preprocess_val = open_clip.create_model_and_transforms('hf-hub:Marqo/marqo-fashionSigLIP')
        
        # ์„ธ๊ทธ๋ฉ˜ํ…Œ์ด์…˜ ๋ชจ๋ธ
        segmenter = pipeline(model="mattmdjaga/segformer_b2_clothes")
        
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        model.to(device)
        
        # ์ด๋ฏธ์ง€ ์ „์ฒ˜๋ฆฌ๋ฅผ ์œ„ํ•œ transforms ์ถ”๊ฐ€
        from torchvision import transforms
        resize_transform = transforms.Compose([
            transforms.Resize((224, 224)),  # CLIP ์ž…๋ ฅ ํฌ๊ธฐ์— ๋งž์ถค
            transforms.ToTensor(),
        ])
        
        return model, preprocess_val, segmenter, device, resize_transform
    except Exception as e:
        logger.error(f"Error loading models: {e}")
        raise

def process_segmentation(image, segmenter):
    """Segmentation processing"""
    try:
        output = segmenter(image)
        
        if not output:
            logger.warning("No segments found in image")
            return None
            
        segment_sizes = [np.sum(seg['mask']) for seg in output]
        
        if not segment_sizes:
            return None
            
        largest_idx = np.argmax(segment_sizes)
        mask = output[largest_idx]['mask']
        
        if not isinstance(mask, np.ndarray):
            mask = np.array(mask)
            
        if len(mask.shape) > 2:
            mask = mask[:, :, 0]
            
        mask = mask.astype(float)
        
        logger.info(f"Successfully created mask with shape {mask.shape}")
        return mask
        
    except Exception as e:
        logger.error(f"Segmentation error: {str(e)}")
        return None

def load_image_from_url(url, max_retries=3):
    for attempt in range(max_retries):
        try:
            response = requests.get(url, timeout=10)
            response.raise_for_status()
            img = Image.open(BytesIO(response.content)).convert('RGB')
            return img
        except Exception as e:
            logger.warning(f"Attempt {attempt + 1} failed: {str(e)}")
            if attempt < max_retries - 1:
                time.sleep(1)
            else:
                logger.error(f"Failed to load image from {url} after {max_retries} attempts")
                return None

def extract_features(image, mask, model, preprocess_val, device):
    """Advanced feature extraction with mask-based attention"""
    try:
        img_array = np.array(image)
        mask = np.expand_dims(mask, axis=2)
        mask_3channel = np.repeat(mask, 3, axis=2)
        
        # 1. ์›๋ณธ ์ด๋ฏธ์ง€์—์„œ ํŠน์ง• ์ถ”์ถœ
        image_tensor_original = preprocess_val(image).unsqueeze(0).to(device)
        
        # 2. ๋งˆ์Šคํฌ๋œ ์ด๋ฏธ์ง€(ํฐ์ƒ‰ ๋ฐฐ๊ฒฝ) ํŠน์ง• ์ถ”์ถœ
        masked_img_white = img_array * mask_3channel + (1 - mask_3channel) * 255
        image_masked_white = Image.fromarray(masked_img_white.astype(np.uint8))
        image_tensor_masked = preprocess_val(image_masked_white).unsqueeze(0).to(device)
        
        # 3. ์˜๋ฅ˜ ๋ถ€๋ถ„๋งŒ ํฌ๋กญํ•œ ๋ฒ„์ „ ํŠน์ง• ์ถ”์ถœ
        bbox = get_bbox_from_mask(mask)  # ๋งˆ์Šคํฌ๋กœ๋ถ€ํ„ฐ ๊ฒฝ๊ณ„์ƒ์ž ์ถ”์ถœ
        cropped_img = crop_and_resize(img_array * mask_3channel, bbox)
        image_cropped = Image.fromarray(cropped_img.astype(np.uint8))
        image_tensor_cropped = preprocess_val(image_cropped).unsqueeze(0).to(device)
        
        with torch.no_grad():
            # ์„ธ ๊ฐ€์ง€ ๋ฒ„์ „์˜ ํŠน์ง• ์ถ”์ถœ
            features_original = model.encode_image(image_tensor_original)
            features_masked = model.encode_image(image_tensor_masked)
            features_cropped = model.encode_image(image_tensor_cropped)
            
            # ๊ฐ€์ค‘์น˜๋ฅผ ์‚ฌ์šฉํ•œ ํŠน์ง• ๊ฒฐํ•ฉ
            combined_features = (
                0.2 * features_original + 
                0.3 * features_masked + 
                0.5 * features_cropped
            )
            
            # ์ •๊ทœํ™”
            combined_features /= combined_features.norm(dim=-1, keepdim=True)
            
        return combined_features.cpu().numpy().flatten()
        
    except Exception as e:
        logger.error(f"Feature extraction error: {e}")
        return None

def get_bbox_from_mask(mask):
    """๋งˆ์Šคํฌ๋กœ๋ถ€ํ„ฐ ๊ฒฝ๊ณ„์ƒ์ž ์ขŒํ‘œ ์ถ”์ถœ"""
    rows = np.any(mask, axis=1)
    cols = np.any(mask, axis=0)
    rmin, rmax = np.where(rows)[0][[0, -1]]
    cmin, cmax = np.where(cols)[0][[0, -1]]
    # ์—ฌ์œ  ๊ณต๊ฐ„ ์ถ”๊ฐ€
    padding = 10
    rmin = max(rmin - padding, 0)
    rmax = min(rmax + padding, mask.shape[0])
    cmin = max(cmin - padding, 0)
    cmax = min(cmax + padding, mask.shape[1])
    return rmin, rmax, cmin, cmax

def crop_and_resize(image, bbox):
    """๊ฒฝ๊ณ„์ƒ์ž๋กœ ์ด๋ฏธ์ง€ ํฌ๋กญ ๋ฐ ๋ฆฌ์‚ฌ์ด์ฆˆ"""
    rmin, rmax, cmin, cmax = bbox
    cropped = image[rmin:rmax, cmin:cmax]
    # PIL์„ ์‚ฌ์šฉํ•˜์—ฌ ์ •์‚ฌ๊ฐํ˜•์œผ๋กœ ๋ฆฌ์‚ฌ์ด์ฆˆ
    size = max(cropped.shape[:2])
    square_img = np.full((size, size, 3), 255, dtype=np.uint8)
    start_h = (size - cropped.shape[0]) // 2
    start_w = (size - cropped.shape[1]) // 2
    square_img[start_h:start_h+cropped.shape[0], 
              start_w:start_w+cropped.shape[1]] = cropped
    return square_img

def process_item(item, model, preprocess_val, segmenter, device, resize_transform):
    """Process single item from JSON data"""
    try:
        # ์ด๋ฏธ์ง€ URL ์ถ”์ถœ
        if '์ด๋ฏธ์ง€ ๋งํฌ' in item:
            image_url = item['์ด๋ฏธ์ง€ ๋งํฌ']
        elif '์ด๋ฏธ์ง€ URL' in item:
            image_url = item['์ด๋ฏธ์ง€ URL']
        else:
            logger.warning(f"No image URL found in item")
            return None

        # ๋ฉ”ํƒ€๋ฐ์ดํ„ฐ ์ƒ์„ฑ
        metadata = create_metadata(item)
        
        # ์ด๋ฏธ์ง€ ๋‹ค์šด๋กœ๋“œ
        image = load_image_from_url(image_url)
        if image is None:
            logger.warning(f"Failed to load image from {image_url}")
            return None

        # ์„ธ๊ทธ๋ฉ˜ํ…Œ์ด์…˜ ์ˆ˜ํ–‰
        mask = process_segmentation(image, segmenter)
        if mask is None:
            logger.warning(f"Failed to create segmentation mask for {image_url}")
            return None

        # ์ƒˆ๋กœ์šด ํŠน์ง• ์ถ”์ถœ ๋ฐฉ์‹ ์ ์šฉ
        try:
            features = extract_features(image, mask, model, preprocess_val, device)
            if features is None:
                raise ValueError("Feature extraction failed")
                
            # ๋””๋ฒ„๊น…์šฉ ์ด๋ฏธ์ง€ ์ €์žฅ (์„ ํƒ์‚ฌํ•ญ)
            # save_debug_images(image, mask, image_url)
                
        except Exception as e:
            logger.error(f"Feature extraction failed for {image_url}: {str(e)}")
            return None

        return {
            'id': metadata['product_id'],
            'embedding': features.tolist(),
            'metadata': metadata,
            'image_uri': image_url
        }

    except Exception as e:
        logger.error(f"Error processing item: {str(e)}")
        return None

# ๋””๋ฒ„๊น…์šฉ ์ด๋ฏธ์ง€ ์ €์žฅ ํ•จ์ˆ˜ (์„ ํƒ์‚ฌํ•ญ)
def save_debug_images(image, mask, url):
    try:
        debug_dir = "debug_images"
        os.makedirs(debug_dir, exist_ok=True)
        
        # URL์—์„œ ํŒŒ์ผ๋ช… ์ถ”์ถœ
        filename = url.split('/')[-1].split('?')[0]
        
        # ์›๋ณธ, ๋งˆ์Šคํฌ, ์ฒ˜๋ฆฌ๋œ ์ด๋ฏธ์ง€ ์ €์žฅ
        image.save(f"{debug_dir}/original_{filename}")
        
        mask_img = Image.fromarray((mask * 255).astype(np.uint8))
        mask_img.save(f"{debug_dir}/mask_{filename}")
        
    except Exception as e:
        logger.warning(f"Failed to save debug images: {str(e)}")

def create_metadata(item):
    """Create standardized metadata from different JSON formats"""
    metadata = {}
    
    # ์ƒํ’ˆ ID ์ฒ˜๋ฆฌ ๊ฐœ์„ 
    if '๏ปฟ์ƒํ’ˆ ID' in item:  # ๋ฌด์‹ ์‚ฌ ํ˜•์‹
        metadata['product_id'] = item['๏ปฟ์ƒํ’ˆ ID']
    else:
        # 11๋ฒˆ๊ฐ€/G๋งˆ์ผ“์˜ ๊ฒฝ์šฐ ์ƒํ’ˆ๋ช…๊ณผ URL๋กœ ์œ ๋‹ˆํฌํ•œ ID ์ƒ์„ฑ
        unique_string = f"{item.get('์ƒํ’ˆ๋ช…', '')}{item.get('์ด๋ฏธ์ง€ URL', '')}"
        metadata['product_id'] = str(hash(unique_string))
    
    # ๋‚˜๋จธ์ง€ ๋ฉ”ํƒ€๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ
    metadata['brand'] = item.get('๋ธŒ๋žœ๋“œ๋ช…', 'unknown')
    metadata['name'] = item.get('์ œํ’ˆ๋ช…') or item.get('์ƒํ’ˆ๋ช…', 'unknown')
    metadata['price'] = (item.get('์ •๊ฐ€') or item.get('๊ฐ€๊ฒฉ') or 
                        item.get('ํŒ๋งค๊ฐ€', 'unknown'))
    metadata['discount'] = item.get('ํ• ์ธ์œจ', 'unknown')
    
    if '์นดํ…Œ๊ณ ๋ฆฌ' in item:
        if isinstance(item['์นดํ…Œ๊ณ ๋ฆฌ'], list):
            metadata['category'] = '/'.join(item['์นดํ…Œ๊ณ ๋ฆฌ'])
        else:
            metadata['category'] = item['์นดํ…Œ๊ณ ๋ฆฌ']
    else:
        # 11๋ฒˆ๊ฐ€/G๋งˆ์ผ“์˜ ๊ฒฝ์šฐ ์ƒํ’ˆ๋ช…์—์„œ ์นดํ…Œ๊ณ ๋ฆฌ ์ถ”์ถœ ์‹œ๋„
        name = metadata['name'].lower()
        categories = ['์›ํ”ผ์Šค', '์…”์ธ ', '๋ธ”๋ผ์šฐ์Šค', '๋‹ˆํŠธ', '๊ฐ€๋””๊ฑด', 
                     '์Šค์ปคํŠธ', 'ํŒฌ์ธ ', '์…‹์—…', '์•„์šฐํ„ฐ', '์ž์ผ“']
        found_categories = [cat for cat in categories if cat in name]
        metadata['category'] = '/'.join(found_categories) if found_categories else 'unknown'
    
    metadata['image_url'] = (item.get('์ด๋ฏธ์ง€ ๋งํฌ') or 
                            item.get('์ด๋ฏธ์ง€ URL', 'unknown'))
    
    # ์‡ผํ•‘๋ชฐ ์ถœ์ฒ˜ ์ถ”๊ฐ€
    if '์ด๋ฏธ์ง€ ๋งํฌ' in item:
        metadata['source'] = 'musinsa'
    elif 'cdn.011st.com' in metadata['image_url']:
        metadata['source'] = '11st'
    elif 'gmarket' in metadata['image_url']:
        metadata['source'] = 'gmarket'
    else:
        metadata['source'] = 'unknown'
    
    return metadata

def create_multimodal_fashion_db(json_files):
    try:
        logger.info("Starting multimodal fashion database creation")
        
        # ๋ชจ๋ธ ๋กœ๋“œ
        model, preprocess_val, segmenter, device, resize_transform = load_models()
        
        # ChromaDB ์„ค์ •
        client = chromadb.PersistentClient(path="./fashion_multimodal_db")
        
        # Multimodal collection ์ƒ์„ฑ
        embedding_function = OpenCLIPEmbeddingFunction()
        data_loader = ImageLoader()
        
        try:
            client.delete_collection("fashion_multimodal")
            logger.info("Deleted existing collection")
        except:
            logger.info("No existing collection to delete")
            
        collection = client.create_collection(
            name="fashion_multimodal",
            embedding_function=embedding_function,
            data_loader=data_loader,
            metadata={"description": "Fashion multimodal collection with advanced feature extraction"}
        )
        
        # ์ฒ˜๋ฆฌ ๊ฒฐ๊ณผ ํ†ต๊ณ„
        stats = {
            'total_processed': 0,
            'successful': 0,
            'failed': 0,
            'feature_extraction_failed': 0
        }
        
        # JSON ํŒŒ์ผ๋“ค ์ฒ˜๋ฆฌ
        for json_file in json_files:
            with open(json_file, 'r', encoding='utf-8') as f:
                data = json.load(f)
                
            logger.info(f"Processing {len(data)} items from {json_file}")
            
            with ThreadPoolExecutor(max_workers=4) as executor:
                futures = []
                for item in data:
                    future = executor.submit(
                        process_item,
                        item, model, preprocess_val, segmenter, device, resize_transform
                    )
                    futures.append(future)
                
                processed_items = []
                for future in tqdm(futures, desc=f"Processing {json_file}"):
                    stats['total_processed'] += 1
                    result = future.result()
                    
                    if result is not None:
                        processed_items.append(result)
                        stats['successful'] += 1
                    else:
                        stats['failed'] += 1
                
                # ๋ฐฐ์น˜๋กœ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค์— ์ถ”๊ฐ€
                if processed_items:
                    try:
                        collection.add(
                            ids=[item['id'] for item in processed_items],
                            embeddings=[item['embedding'] for item in processed_items],
                            metadatas=[item['metadata'] for item in processed_items],
                            uris=[item['image_uri'] for item in processed_items]
                        )
                    except Exception as e:
                        logger.error(f"Failed to add batch to collection: {str(e)}")
                        stats['failed'] += len(processed_items)
                        stats['successful'] -= len(processed_items)
                    
        # ์ตœ์ข… ํ†ต๊ณ„ ์ถœ๋ ฅ
        logger.info("Processing completed:")
        logger.info(f"Total processed: {stats['total_processed']}")
        logger.info(f"Successful: {stats['successful']}")
        logger.info(f"Failed: {stats['failed']}")
        
        return stats['successful'] > 0
        
    except Exception as e:
        logger.error(f"Database creation error: {str(e)}")
        return False

if __name__ == "__main__":
    json_files = [
        './musinsa_ranking_images_category_0920.json',
        './11st/11st_bagaccessory_20241017_172846.json',
        './11st/11st_best_abroad_bagaccessory_20241017_173300.json',
        './11st/11st_best_abroad_fashion_20241017_173144.json',
        './11st/11st_best_abroad_luxury_20241017_173343.json',
        './11st/11st_best_men_20241017_172534.json',
        './11st/11st_best_women_20241017_172127.json',
        './gmarket/gmarket_best_accessory_20241015_155921.json',
        './gmarket/gmarket_best_bag_20241015_155811.json',
        './gmarket/gmarket_best_brand_20241015_155530.json',
        './gmarket/gmarket_best_casual_20241015_155421.json',
        './gmarket/gmarket_best_men_20241015_155025.json',
        './gmarket/gmarket_best_shoe_20241015_155613.json',
        './gmarket/gmarket_best_women_20241015_154206.json'
    ]
    
    success = create_multimodal_fashion_db(json_files)
    
    if success:
        print("Successfully created multimodal fashion database!")
    else:
        print("Failed to create database. Check the logs for details.")