|
import os |
|
import re |
|
|
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
from langchain.document_loaders import DirectoryLoader, PyPDFLoader |
|
|
|
from langchain.vectorstores import Chroma |
|
from langchain.embeddings import SentenceTransformerEmbeddings |
|
from langchain.prompts import PromptTemplate |
|
from langchain.llms import HuggingFaceHub |
|
from langchain.chains import RetrievalQA |
|
|
|
from transformers import pipeline |
|
|
|
import gradio as gr |
|
|
|
|
|
HUGGING_FACE_TOKEN = os.environ["HUGGING_FACE_TOKEN"] |
|
|
|
|
|
model_name = "llmware/industry-bert-insurance-v0.1" |
|
|
|
def remove_special_characters(string): |
|
return re.sub(r"\n", " ", string) |
|
|
|
|
|
def RAG_Langchain(query): |
|
embeddings = SentenceTransformerEmbeddings(model_name=model_name) |
|
repo_id = "llmware/bling-sheared-llama-1.3b-0.1" |
|
|
|
loader = DirectoryLoader('data/', glob="**/*.pdf", show_progress=True, loader_cls=PyPDFLoader) |
|
|
|
documents = loader.load() |
|
|
|
|
|
|
|
|
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100) |
|
|
|
texts = text_splitter.split_documents(documents) |
|
|
|
chunk = texts[0] |
|
chunk.page_content = remove_special_characters(chunk.page_content) |
|
|
|
|
|
for chunks in texts: |
|
chunks.page_content = remove_special_characters(chunks.page_content) |
|
|
|
|
|
vector_stores=Chroma.from_documents(texts, embeddings, collection_metadata = {"hnsw:space": "cosine"}, persist_directory="stores/insurance_cosine") |
|
|
|
|
|
load_vector_store=Chroma(persist_directory="stores/insurance_cosine", embedding_function=embeddings) |
|
|
|
|
|
docs = load_vector_store.similarity_search_with_score(query=query, k=1) |
|
results = {"Score":[],"Content":[],"Metadata":[]}; |
|
|
|
for i in docs: |
|
doc, score = i |
|
|
|
results['Score'].append(score) |
|
results['Content'].append(doc.page_content) |
|
results['Metadata'].append(doc.metadata) |
|
|
|
context = results['Content'] |
|
|
|
return results |
|
|
|
|
|
def generateResponseBasedOnContext(model_name, context_string, query): |
|
|
|
question_answerer = pipeline("question-answering", model=model_name) |
|
context_prompt = "You are a sports expert. Answer the user's question by using following context: " |
|
|
|
context = context_prompt + context_string |
|
print("context : ", context) |
|
|
|
result = question_answerer(question=query, context=context) |
|
return result['answer'] |
|
|
|
|
|
def gradio_adapted_RAG(model_name, query): |
|
context = str(RAG_Langchain(query)['Content']) |
|
generated_answer = generateResponseBasedOnContext(str(model_name), |
|
context, |
|
query) |
|
return generated_answer |
|
|
|
|
|
dropdown = gr.Dropdown(choices=["tbs17/MathBERT", |
|
"witiko/mathberta", |
|
"meta-math/MetaMath-Mistral-7B", |
|
"deepseek-ai/deepseek-math-7b-instruct", |
|
"MaziyarPanahi/WizardLM-Math-70B-v0.1"], label="Choose a model") |
|
|
|
iface = gr.Interface(fn=gradio_adapted_RAG, inputs=[dropdown, "text"], outputs="text") |
|
iface.launch() |
|
|
|
|