Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,51 +1,52 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import torch
|
4 |
-
|
5 |
MODEL_NAME = "Qwen/Qwen2.5-0.5B-Instruct"
|
6 |
-
|
7 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME
|
8 |
-
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME,
|
9 |
-
|
10 |
def respond(
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
):
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
|
|
30 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
31 |
-
|
32 |
return response
|
33 |
-
|
34 |
demo = gr.ChatInterface(
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
)
|
49 |
-
|
50 |
if __name__ == "__main__":
|
51 |
-
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import torch
|
4 |
+
|
5 |
MODEL_NAME = "Qwen/Qwen2.5-0.5B-Instruct"
|
6 |
+
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
8 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.float16, device_map="auto")
|
9 |
+
|
10 |
def respond(
|
11 |
+
message,
|
12 |
+
history: list[tuple[str, str]],
|
13 |
+
system_message,
|
14 |
+
max_tokens,
|
15 |
+
temperature,
|
16 |
+
top_p,
|
17 |
):
|
18 |
+
messages = [{"role": "system", "content": system_message}]
|
19 |
+
|
20 |
+
for val in history:
|
21 |
+
if val[0]:
|
22 |
+
messages.append({"role": "user", "content": val[0]})
|
23 |
+
if val[1]:
|
24 |
+
messages.append({"role": "assistant", "content": val[1]})
|
25 |
+
|
26 |
+
messages.append({"role": "user", "content": message})
|
27 |
+
|
28 |
+
inputs = tokenizer(message, return_tensors="pt").to("cpu")
|
29 |
+
with torch.no_grad():
|
30 |
+
outputs = model.generate(**inputs, max_length=max_tokens, temperature=temperature, top_p=top_p)
|
31 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
32 |
+
|
33 |
return response
|
34 |
+
|
35 |
demo = gr.ChatInterface(
|
36 |
+
respond,
|
37 |
+
additional_inputs=[
|
38 |
+
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
39 |
+
gr.Slider(minimum=1, maximum=512, value=64, step=1, label="Max new tokens"),
|
40 |
+
gr.Slider(minimum=0.1, maximum=1.5, value=0.3, step=0.1, label="Temperature"),
|
41 |
+
gr.Slider(
|
42 |
+
minimum=0.1,
|
43 |
+
maximum=0.8,
|
44 |
+
value=0.75,
|
45 |
+
step=0.05,
|
46 |
+
label="Top-p (nucleus sampling)",
|
47 |
+
),
|
48 |
+
],
|
49 |
)
|
50 |
+
|
51 |
if __name__ == "__main__":
|
52 |
+
demo.launch()
|