File size: 12,816 Bytes
9513395 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 |
import gradio as gr
import numpy as np
import pandas as pd
import plotly.graph_objects as go
from datasets import load_dataset
from evaluate.utils import parse_readme
from scipy.stats import gaussian_kde, spearmanr
import generate_annotated_diffs
from api_wrappers import hf_data_loader
from generation_steps.metrics_analysis import AGGR_METRICS, edit_distance_fn
colors = {
"Expert-labeled": "#C19C0B",
"Synthetic Backward": "#913632",
"Synthetic Forward": "#58136a",
"Full": "#000000",
}
METRICS = {
"Edit Distance": "editdist",
"Edit Similarity": "editsim",
"BLEU": "bleu",
"METEOR": "meteor",
"ROUGE-1": "rouge1",
"ROUGE-2": "rouge2",
"ROUGE-L": "rougeL",
"BERTScore": "bertscore",
"ChrF": "chrF",
}
df_related = generate_annotated_diffs.data_with_annotated_diffs()
def golden():
return df_related.loc[(df_related["G_type"] == "initial") & (df_related["E_type"] == "expert_labeled")].reset_index(
drop=True
)
def backward():
return df_related.loc[
(df_related["G_type"] == "synthetic_backward") & (df_related["E_type"] == "expert_labeled")
].reset_index(drop=True)
def forward():
return df_related.loc[
(df_related["G_type"] == "initial") & (df_related["E_type"] == "synthetic_forward")
].reset_index(drop=True)
def forward_from_backward():
return df_related.loc[
(df_related.G_type == "synthetic_backward")
& (df_related.E_type.isin(["synthetic_forward", "synthetic_forward_from_backward"]))
].reset_index(drop=True)
n_diffs_manual = len(golden())
n_diffs_synthetic_backward = len(backward())
n_diffs_synthetic_forward = len(forward())
n_diffs_synthetic_forward_backward = len(forward_from_backward())
def update_dataset_view(diff_idx, df):
diff_idx -= 1
return (
df.iloc[diff_idx]["annotated_diff"],
df.iloc[diff_idx]["commit_msg_start"] if "commit_msg_start" in df.columns else df.iloc[diff_idx]["G_text"],
df.iloc[diff_idx]["commit_msg_end"] if "commit_msg_end" in df.columns else df.iloc[diff_idx]["E_text"],
f"https://github.com/{df.iloc[diff_idx]['repo']}/commit/{df.iloc[diff_idx]['hash']}",
)
def update_dataset_view_manual(diff_idx):
return update_dataset_view(diff_idx, golden())
def update_dataset_view_synthetic_backward(diff_idx):
return update_dataset_view(diff_idx, backward())
def update_dataset_view_synthetic_forward(diff_idx):
return update_dataset_view(diff_idx, forward())
def update_dataset_view_synthetic_forward_backward(diff_idx):
return update_dataset_view(diff_idx, forward_from_backward())
def number_of_pairs_plot():
related_plot_dict = {
"Full": df_related,
"Synthetic Backward": backward(),
"Synthetic Forward": pd.concat([forward(), forward_from_backward()], axis=0, ignore_index=True),
"Expert-labeled": golden(),
}
df_unrelated = hf_data_loader.load_synthetic_as_pandas()
df_unrelated = df_unrelated.loc[~df_unrelated.is_related].copy()
unrelated_plot_dict = {
"Full": df_unrelated,
"Synthetic Backward": df_unrelated.loc[
(df_unrelated["G_type"] == "synthetic_backward")
& (~df_unrelated.E_type.isin(["synthetic_forward", "synthetic_forward_from_backward"]))
],
"Synthetic Forward": df_unrelated.loc[
((df_unrelated["G_type"] == "initial") & (df_unrelated["E_type"] == "synthetic_forward"))
| (
(df_unrelated["G_type"] == "synthetic_backward")
& (df_unrelated["E_type"].isin(["synthetic_forward", "synthetic_forward_from_backward"]))
)
],
"Expert-labeled": df_unrelated.loc[
(df_unrelated.G_type == "initial") & (df_unrelated.E_type == "expert_labeled")
],
}
traces = []
for split in related_plot_dict.keys():
related_count = len(related_plot_dict[split])
unrelated_count = len(unrelated_plot_dict[split])
traces.append(
go.Bar(
name=f"{split} - Related pairs",
x=[split],
y=[related_count],
marker=dict(
color=colors[split],
),
)
)
traces.append(
go.Bar(
name=f"{split} - Conditionally independent pairs",
x=[split],
y=[unrelated_count],
marker=dict(
color=colors[split],
pattern=dict(
shape="/", # Crosses
fillmode="overlay",
solidity=0.5,
),
),
)
)
fig = go.Figure(data=traces)
fig.update_layout(
barmode="stack",
bargap=0.2,
xaxis=dict(title="Split", showgrid=True, gridcolor="lightgrey"),
yaxis=dict(title="Number of Examples", showgrid=True, gridcolor="lightgrey"),
legend=dict(title="Pair Type", orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
plot_bgcolor="rgba(0,0,0,0)",
paper_bgcolor="rgba(0,0,0,0)",
width=1100,
)
return fig
def edit_distance_plot():
df_edit_distance = {
"Full": [edit_distance_fn(pred=row["G_text"], ref=row["E_text"]) for _, row in df_related.iterrows()],
"Synthetic Backward": [
edit_distance_fn(pred=row["G_text"], ref=row["E_text"]) for _, row in backward().iterrows()
],
"Synthetic Forward": [
edit_distance_fn(pred=row["G_text"], ref=row["E_text"])
for _, row in pd.concat([forward(), forward_from_backward()], axis=0, ignore_index=True).iterrows()
],
"Expert-labeled": [edit_distance_fn(pred=row["G_text"], ref=row["E_text"]) for _, row in golden().iterrows()],
}
traces = []
for key in df_edit_distance:
kde_x = np.linspace(0, 1200, 1000)
kde = gaussian_kde(df_edit_distance[key])
kde_line = go.Scatter(x=kde_x, y=kde(kde_x), mode="lines", name=key, line=dict(color=colors[key], width=5))
traces.append(kde_line)
fig = go.Figure(data=traces)
fig.update_layout(
bargap=0.1,
xaxis=dict(title=dict(text="Edit Distance"), range=[0, 1200], showgrid=True, gridcolor="lightgrey"),
yaxis=dict(
title=dict(text="Probability Density"),
range=[0, 0.004],
showgrid=True,
gridcolor="lightgrey",
tickvals=[0.0005, 0.001, 0.0015, 0.002, 0.0025, 0.003, 0.0035, 0.004],
tickformat=".4f",
),
plot_bgcolor="rgba(0,0,0,0)",
paper_bgcolor="rgba(0,0,0,0)",
width=1100,
)
return fig
def get_correlations_table(online_metric_name: str) -> pd.DataFrame:
df = load_dataset(
"JetBrains-Research/synthetic-commit-msg-edits", "all_pairs_with_metrics_other_online_metrics", split="train"
).to_pandas()
corr_df = (
df.loc[~df.is_related]
.groupby(["G_text", "G_type", "hash", "repo"] + [f"online_{online_metric_name}"])
.apply(lambda g: g.to_dict(orient="records"), include_groups=False)
.reset_index(name="unrelated_pairs")
.copy()
)
_ = corr_df.copy()
for metric in AGGR_METRICS:
if metric in ["editdist"]:
_[metric] = _.unrelated_pairs.apply(lambda pairs: min(pair[metric] for pair in pairs))
else:
_[metric] = _.unrelated_pairs.apply(lambda pairs: max(pair[metric] for pair in pairs))
results = []
for metric in AGGR_METRICS:
x = _[metric].to_numpy()
y = _[f"online_{online_metric_name}"].to_numpy()
corr, p_value = spearmanr(x, y)
results.append({"metric": metric, "corr": corr, "p_value": p_value})
__ = pd.DataFrame(results)
__["p_value"] = ["< 0.05" if p < 0.05 else p for p in __.p_value]
__["corr_abs"] = abs(__["corr"])
__["corr"] = __["corr"].round(2)
__["metric"] = __["metric"].map({v: k for k, v in METRICS.items()})
return (
__.sort_values(by=["corr_abs"], ascending=False)
.drop(columns=["corr_abs"])
.rename(columns={"metric": "Metric m", "corr": "Correlation Q(m, m*)", "p_value": "p-value"})
)
force_light_theme_js_func = """
function refresh() {
const url = new URL(window.location);
if (url.searchParams.get('__theme') !== 'light') {
url.searchParams.set('__theme', 'light');
window.location.href = url.href;
}
}
"""
if __name__ == "__main__":
with gr.Blocks(theme=gr.themes.Soft(), js=force_light_theme_js_func) as application:
gr.Markdown(parse_readme("README.md"))
def dataset_view_tab(n_items):
slider = gr.Slider(minimum=1, maximum=n_items, step=1, value=1, label=f"Sample number (total: {n_items})")
diff_view = gr.Highlightedtext(combine_adjacent=True, color_map={"+": "green", "-": "red"})
start_view = gr.Textbox(interactive=False, label="Initial message G", container=True)
end_view = gr.Textbox(interactive=False, label="Edited message E", container=True)
link_view = gr.Markdown()
view = [diff_view, start_view, end_view, link_view]
return slider, view
with gr.Tab("Examples Exploration"):
with gr.Tab("Manual"):
slider_manual, view_manual = dataset_view_tab(n_diffs_manual)
slider_manual.change(update_dataset_view_manual, inputs=slider_manual, outputs=view_manual)
with gr.Tab("Synthetic Backward"):
slider_synthetic_backward, view_synthetic_backward = dataset_view_tab(n_diffs_synthetic_backward)
slider_synthetic_backward.change(
update_dataset_view_synthetic_backward,
inputs=slider_synthetic_backward,
outputs=view_synthetic_backward,
)
with gr.Tab("Synthetic Forward (from initial)"):
slider_synthetic_forward, view_synthetic_forward = dataset_view_tab(n_diffs_synthetic_forward)
slider_synthetic_forward.change(
update_dataset_view_synthetic_forward,
inputs=slider_synthetic_forward,
outputs=view_synthetic_forward,
)
with gr.Tab("Synthetic Forward (from backward)"):
slider_synthetic_forward_backward, view_synthetic_forward_backward = dataset_view_tab(
n_diffs_synthetic_forward_backward
)
slider_synthetic_forward_backward.change(
update_dataset_view_synthetic_forward_backward,
inputs=slider_synthetic_forward_backward,
outputs=view_synthetic_forward_backward,
)
with gr.Tab("Dataset Statistics"):
gr.Markdown("## Number of examples per split")
number_of_pairs_gr_plot = gr.Plot(number_of_pairs_plot, label=None)
gr.Markdown("## Edit Distance Distribution (w/o PyCharm Logs)")
edit_distance_gr_plot = gr.Plot(edit_distance_plot(), label=None)
with gr.Tab("Experimental Results"):
gr.Markdown(
"Here, we provide the additional experimental results with different text similarity metrics used as the target online metric, "
"in addition to edit distance between generated messages G and their edited counterparts E."
)
gr.Markdown(
"Please, select one of the available metrics **m*** below to see the correlations **Q(m, m\*)** of offline text similarity metrics with **m*** as an online metric."
)
for metric in METRICS:
with gr.Tab(metric):
gr.Markdown(
f"The table below presents the correlation coefficients **Q(m, m\*)** where {metric} is used as an online metric **m***."
)
result_df = get_correlations_table(METRICS[metric])
gr.DataFrame(result_df)
application.load(update_dataset_view_manual, inputs=slider_manual, outputs=view_manual)
application.load(
update_dataset_view_synthetic_backward, inputs=slider_synthetic_backward, outputs=view_synthetic_backward
)
application.load(
update_dataset_view_synthetic_forward, inputs=slider_synthetic_forward, outputs=view_synthetic_forward
)
application.load(
update_dataset_view_synthetic_forward_backward,
inputs=slider_synthetic_forward_backward,
outputs=view_synthetic_forward_backward,
)
application.launch()
|