talklas / app.py
Jerich's picture
Updated the app.py to debug=True in launch()
5d63d86 verified
import os
import torch
import gradio as gr
import numpy as np
import soundfile as sf
from transformers import (
AutoModelForSeq2SeqLM,
AutoTokenizer,
VitsModel,
AutoProcessor,
AutoModelForCTC,
WhisperProcessor,
WhisperForConditionalGeneration
)
from typing import Optional, Tuple, Dict, List
class TalklasTranslator:
"""
Speech-to-Speech translation pipeline for Philippine languages.
Uses MMS/Whisper for STT, NLLB for MT, and MMS for TTS.
"""
LANGUAGE_MAPPING = {
"English": "eng",
"Tagalog": "tgl",
"Cebuano": "ceb",
"Ilocano": "ilo",
"Waray": "war",
"Pangasinan": "pag"
}
NLLB_LANGUAGE_CODES = {
"eng": "eng_Latn",
"tgl": "tgl_Latn",
"ceb": "ceb_Latn",
"ilo": "ilo_Latn",
"war": "war_Latn",
"pag": "pag_Latn"
}
def __init__(
self,
source_lang: str = "eng",
target_lang: str = "tgl",
device: Optional[str] = None
):
self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
self.source_lang = source_lang
self.target_lang = target_lang
self.sample_rate = 16000
print(f"Initializing Talklas Translator on {self.device}")
# Initialize models
self._initialize_stt_model()
self._initialize_mt_model()
self._initialize_tts_model()
def _initialize_stt_model(self):
"""Initialize speech-to-text model with fallback to Whisper"""
try:
print("Loading STT model...")
try:
# Try loading MMS model first
self.stt_processor = AutoProcessor.from_pretrained("facebook/mms-1b-all")
self.stt_model = AutoModelForCTC.from_pretrained("facebook/mms-1b-all")
# Set language if available
if self.source_lang in self.stt_processor.tokenizer.vocab.keys():
self.stt_processor.tokenizer.set_target_lang(self.source_lang)
self.stt_model.load_adapter(self.source_lang)
print(f"Loaded MMS STT model for {self.source_lang}")
else:
print(f"Language {self.source_lang} not in MMS, using default")
except Exception as mms_error:
print(f"MMS loading failed: {mms_error}")
# Fallback to Whisper
print("Loading Whisper as fallback...")
self.stt_processor = WhisperProcessor.from_pretrained("openai/whisper-small")
self.stt_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
print("Loaded Whisper STT model")
self.stt_model.to(self.device)
except Exception as e:
print(f"STT model initialization failed: {e}")
raise RuntimeError("Could not initialize STT model")
def _initialize_mt_model(self):
"""Initialize machine translation model"""
try:
print("Loading NLLB Translation model...")
self.mt_model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M")
self.mt_tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M")
self.mt_model.to(self.device)
print("NLLB Translation model loaded")
except Exception as e:
print(f"MT model initialization failed: {e}")
raise
def _initialize_tts_model(self):
"""Initialize text-to-speech model"""
try:
print("Loading TTS model...")
try:
self.tts_model = VitsModel.from_pretrained(f"facebook/mms-tts-{self.target_lang}")
self.tts_tokenizer = AutoTokenizer.from_pretrained(f"facebook/mms-tts-{self.target_lang}")
print(f"Loaded TTS model for {self.target_lang}")
except Exception as tts_error:
print(f"Target language TTS failed: {tts_error}")
print("Falling back to English TTS")
self.tts_model = VitsModel.from_pretrained("facebook/mms-tts-eng")
self.tts_tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-eng")
self.tts_model.to(self.device)
except Exception as e:
print(f"TTS model initialization failed: {e}")
raise
def update_languages(self, source_lang: str, target_lang: str) -> str:
"""Update languages and reinitialize models if needed"""
if source_lang == self.source_lang and target_lang == self.target_lang:
return "Languages already set"
self.source_lang = source_lang
self.target_lang = target_lang
# Only reinitialize models that depend on language
self._initialize_stt_model()
self._initialize_tts_model()
return f"Languages updated to {source_lang}{target_lang}"
def speech_to_text(self, audio_path: str) -> str:
"""Convert speech to text using loaded STT model"""
try:
waveform, sample_rate = sf.read(audio_path)
if sample_rate != 16000:
import librosa
waveform = librosa.resample(waveform, orig_sr=sample_rate, target_sr=16000)
inputs = self.stt_processor(
waveform,
sampling_rate=16000,
return_tensors="pt"
).to(self.device)
with torch.no_grad():
if isinstance(self.stt_model, WhisperForConditionalGeneration): # Whisper model
generated_ids = self.stt_model.generate(**inputs)
transcription = self.stt_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
else: # MMS model (Wav2Vec2ForCTC)
logits = self.stt_model(**inputs).logits
predicted_ids = torch.argmax(logits, dim=-1)
transcription = self.stt_processor.batch_decode(predicted_ids)[0]
return transcription
except Exception as e:
print(f"Speech recognition failed: {e}")
raise RuntimeError("Speech recognition failed")
def translate_text(self, text: str) -> str:
"""Translate text using NLLB model"""
try:
source_code = self.NLLB_LANGUAGE_CODES[self.source_lang]
target_code = self.NLLB_LANGUAGE_CODES[self.target_lang]
self.mt_tokenizer.src_lang = source_code
inputs = self.mt_tokenizer(text, return_tensors="pt").to(self.device)
with torch.no_grad():
generated_tokens = self.mt_model.generate(
**inputs,
forced_bos_token_id=self.mt_tokenizer.convert_tokens_to_ids(target_code),
max_length=448
)
return self.mt_tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
except Exception as e:
print(f"Translation failed: {e}")
raise RuntimeError("Text translation failed")
def text_to_speech(self, text: str) -> Tuple[int, np.ndarray]:
"""Convert text to speech"""
try:
inputs = self.tts_tokenizer(text, return_tensors="pt").to(self.device)
with torch.no_grad():
output = self.tts_model(**inputs)
speech = output.waveform.cpu().numpy().squeeze()
speech = (speech * 32767).astype(np.int16)
return self.tts_model.config.sampling_rate, speech
except Exception as e:
print(f"Speech synthesis failed: {e}")
raise RuntimeError("Speech synthesis failed")
def translate_speech(self, audio_path: str) -> Dict:
"""Full speech-to-speech translation"""
try:
source_text = self.speech_to_text(audio_path)
translated_text = self.translate_text(source_text)
sample_rate, audio = self.text_to_speech(translated_text)
return {
"source_text": source_text,
"translated_text": translated_text,
"output_audio": (sample_rate, audio),
"performance": "Translation successful"
}
except Exception as e:
return {
"source_text": "Error",
"translated_text": "Error",
"output_audio": (16000, np.zeros(1000, dtype=np.int16)),
"performance": f"Error: {str(e)}"
}
def translate_text_only(self, text: str) -> Dict:
"""Text-to-speech translation"""
try:
translated_text = self.translate_text(text)
sample_rate, audio = self.text_to_speech(translated_text)
return {
"source_text": text,
"translated_text": translated_text,
"output_audio": (sample_rate, audio),
"performance": "Translation successful"
}
except Exception as e:
return {
"source_text": text,
"translated_text": "Error",
"output_audio": (16000, np.zeros(1000, dtype=np.int16)),
"performance": f"Error: {str(e)}"
}
class TranslatorSingleton:
_instance = None
@classmethod
def get_instance(cls):
if cls._instance is None:
cls._instance = TalklasTranslator()
return cls._instance
def process_audio(audio_path, source_lang, target_lang):
"""Process audio through the full translation pipeline"""
# Validate input
if not audio_path:
return None, "No audio provided", "No translation available", "Please provide audio input"
# Update languages
source_code = TalklasTranslator.LANGUAGE_MAPPING[source_lang]
target_code = TalklasTranslator.LANGUAGE_MAPPING[target_lang]
translator = TranslatorSingleton.get_instance()
status = translator.update_languages(source_code, target_code)
# Process the audio
results = translator.translate_speech(audio_path)
return results["output_audio"], results["source_text"], results["translated_text"], results["performance"]
def process_text(text, source_lang, target_lang):
"""Process text through the translation pipeline"""
# Validate input
if not text:
return None, "No text provided", "No translation available", "Please provide text input"
# Update languages
source_code = TalklasTranslator.LANGUAGE_MAPPING[source_lang]
target_code = TalklasTranslator.LANGUAGE_MAPPING[target_lang]
translator = TranslatorSingleton.get_instance()
status = translator.update_languages(source_code, target_code)
# Process the text
results = translator.translate_text_only(text)
return results["output_audio"], results["source_text"], results["translated_text"], results["performance"]
def create_gradio_interface():
"""Create and launch Gradio interface"""
# Define language options
languages = list(TalklasTranslator.LANGUAGE_MAPPING.keys())
# Define the interface
demo = gr.Blocks(title="Talklas - Speech & Text Translation")
with demo:
gr.Markdown("# Talklas: Speech-to-Speech Translation System")
gr.Markdown("### Translate between Philippine Languages and English")
with gr.Row():
with gr.Column():
source_lang = gr.Dropdown(
choices=languages,
value="English",
label="Source Language"
)
target_lang = gr.Dropdown(
choices=languages,
value="Tagalog",
label="Target Language"
)
language_status = gr.Textbox(label="Language Status")
update_btn = gr.Button("Update Languages")
with gr.Tabs():
with gr.TabItem("Audio Input"):
with gr.Row():
with gr.Column():
gr.Markdown("### Audio Input")
audio_input = gr.Audio(
type="filepath",
label="Upload Audio File"
)
audio_translate_btn = gr.Button("Translate Audio", variant="primary")
with gr.Column():
gr.Markdown("### Output")
audio_output = gr.Audio(
label="Translated Speech",
type="numpy",
autoplay=True
)
with gr.TabItem("Text Input"):
with gr.Row():
with gr.Column():
gr.Markdown("### Text Input")
text_input = gr.Textbox(
label="Enter text to translate",
lines=3
)
text_translate_btn = gr.Button("Translate Text", variant="primary")
with gr.Column():
gr.Markdown("### Output")
text_output = gr.Audio(
label="Translated Speech",
type="numpy",
autoplay=True
)
with gr.Row():
with gr.Column():
source_text = gr.Textbox(label="Source Text")
translated_text = gr.Textbox(label="Translated Text")
performance_info = gr.Textbox(label="Performance Metrics")
# Set up events
update_btn.click(
lambda source_lang, target_lang: TranslatorSingleton.get_instance().update_languages(
TalklasTranslator.LANGUAGE_MAPPING[source_lang],
TalklasTranslator.LANGUAGE_MAPPING[target_lang]
),
inputs=[source_lang, target_lang],
outputs=[language_status]
)
# Audio translate button click
audio_translate_btn.click(
process_audio,
inputs=[audio_input, source_lang, target_lang],
outputs=[audio_output, source_text, translated_text, performance_info]
).then(
None,
None,
None,
js="""() => {
const audioElements = document.querySelectorAll('audio');
if (audioElements.length > 0) {
const lastAudio = audioElements[audioElements.length - 1];
lastAudio.play().catch(error => {
console.warn('Autoplay failed:', error);
alert('Audio may require user interaction to play');
});
}
}"""
)
# Text translate button click
text_translate_btn.click(
process_text,
inputs=[text_input, source_lang, target_lang],
outputs=[text_output, source_text, translated_text, performance_info]
).then(
None,
None,
None,
js="""() => {
const audioElements = document.querySelectorAll('audio');
if (audioElements.length > 0) {
const lastAudio = audioElements[audioElements.length - 1];
lastAudio.play().catch(error => {
console.warn('Autoplay failed:', error);
alert('Audio may require user interaction to play');
});
}
}"""
)
return demo
if __name__ == "__main__":
demo = create_gradio_interface()
demo.launch(share=True, debug=True)