Upload 2 files
Browse files- requirements.txt +7 -0
- summary.py +36 -0
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
opencc-python-reimplemented
|
2 |
+
streamlit
|
3 |
+
transformers
|
4 |
+
sentencepiece
|
5 |
+
torch
|
6 |
+
torchvision
|
7 |
+
torchaudio
|
summary.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import T5ForConditionalGeneration, T5Tokenizer
|
3 |
+
import opencc
|
4 |
+
|
5 |
+
#local_path = "./LLM"
|
6 |
+
# 使用中文摘要模型
|
7 |
+
local_path = 'utrobinmv/t5_summary_en_ru_zh_base_2048'
|
8 |
+
model = T5ForConditionalGeneration.from_pretrained(local_path)
|
9 |
+
tokenizer = T5Tokenizer.from_pretrained(local_path)
|
10 |
+
|
11 |
+
|
12 |
+
|
13 |
+
# Streamlit UI
|
14 |
+
st.title("中文文章摘要工具")
|
15 |
+
# Create an OpenCC converter for converting simplified Chinese to traditional Chinese
|
16 |
+
converter = opencc.OpenCC('s2t')
|
17 |
+
# Input text area for the article
|
18 |
+
article = st.text_area("請輸入文章", "")
|
19 |
+
|
20 |
+
# Function to generate summary
|
21 |
+
@st.cache_data
|
22 |
+
def generate_summary(article):
|
23 |
+
inputs = tokenizer.encode("摘要:" + article, return_tensors="pt", max_length=1024, truncation=True)
|
24 |
+
summary_ids = model.generate(inputs, max_length=180, min_length=60, length_penalty=2.0, num_beams=4, early_stopping=True)
|
25 |
+
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
26 |
+
return summary
|
27 |
+
|
28 |
+
# Button to generate summary
|
29 |
+
if st.button("生成摘要"):
|
30 |
+
if article.strip() == "":
|
31 |
+
st.error("請輸入文章。")
|
32 |
+
else:
|
33 |
+
summary = generate_summary(article)
|
34 |
+
traditional_summary = converter.convert(summary)
|
35 |
+
st.subheader("摘要:")
|
36 |
+
st.write(traditional_summary)
|