Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,22 +4,23 @@ from transformers import AutoModelForObjectDetection, AutoImageProcessor
|
|
4 |
from PIL import Image, ImageDraw
|
5 |
|
6 |
# Definir el repositorio en Hugging Face
|
7 |
-
repo_id = "
|
8 |
|
9 |
-
# Cargar el modelo
|
10 |
-
|
|
|
11 |
image_processor = AutoImageProcessor.from_pretrained(repo_id)
|
12 |
|
13 |
# Funci贸n para la inferencia
|
14 |
def predict(img):
|
15 |
-
img = img.convert("RGB") # Asegurar
|
16 |
-
inputs = image_processor(images=img, return_tensors="pt")
|
17 |
|
18 |
with torch.no_grad():
|
19 |
outputs = model(**inputs)
|
20 |
|
21 |
# Procesar los resultados
|
22 |
-
target_sizes = torch.tensor([img.size[::-1]])
|
23 |
results = image_processor.post_process_object_detection(outputs, threshold=0.5, target_sizes=target_sizes)[0]
|
24 |
|
25 |
# Dibujar las detecciones en la imagen
|
@@ -41,8 +42,7 @@ gr.Interface(
|
|
41 |
fn=predict,
|
42 |
inputs=gr.Image(type="pil"),
|
43 |
outputs=[gr.Image(), gr.Text()],
|
44 |
-
|
45 |
-
|
46 |
-
examples=['raccoon-133.jpg', 'raccoon-108.jpg']
|
47 |
).launch(share=False)
|
48 |
|
|
|
4 |
from PIL import Image, ImageDraw
|
5 |
|
6 |
# Definir el repositorio en Hugging Face
|
7 |
+
repo_id = "facebook/detr-resnet-101"
|
8 |
|
9 |
+
# Cargar el modelo en modo FP16 para mayor velocidad en GPU
|
10 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
+
model = AutoModelForObjectDetection.from_pretrained(repo_id).to(device).half()
|
12 |
image_processor = AutoImageProcessor.from_pretrained(repo_id)
|
13 |
|
14 |
# Funci贸n para la inferencia
|
15 |
def predict(img):
|
16 |
+
img = img.convert("RGB") # Asegurar formato RGB
|
17 |
+
inputs = image_processor(images=img, return_tensors="pt", pin_memory=True).to(device)
|
18 |
|
19 |
with torch.no_grad():
|
20 |
outputs = model(**inputs)
|
21 |
|
22 |
# Procesar los resultados
|
23 |
+
target_sizes = torch.tensor([img.size[::-1]], device=device)
|
24 |
results = image_processor.post_process_object_detection(outputs, threshold=0.5, target_sizes=target_sizes)[0]
|
25 |
|
26 |
# Dibujar las detecciones en la imagen
|
|
|
42 |
fn=predict,
|
43 |
inputs=gr.Image(type="pil"),
|
44 |
outputs=[gr.Image(), gr.Text()],
|
45 |
+
examples=['raccoon-133.jpg', 'raccoon-108.jpg'],
|
46 |
+
concurrency_limit=2
|
|
|
47 |
).launch(share=False)
|
48 |
|