Practica2 / app.py
JeanCGuerrero's picture
Update app.py
1c7e162 verified
raw
history blame
1.71 kB
import gradio as gr
import torch
from transformers import AutoModelForObjectDetection, AutoImageProcessor
from PIL import Image, ImageDraw
# Definir el repositorio en Hugging Face
repo_id = "JeanCGuerrero/Practica2"
# Cargar el modelo de Hugging Face
model = AutoModelForObjectDetection.from_pretrained(repo_id)
image_processor = AutoImageProcessor.from_pretrained(repo_id)
# Función para la inferencia
def predict(img):
img = img.convert("RGB") # Asegurar que la imagen esté en formato RGB
inputs = image_processor(images=img, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
# Procesar los resultados
target_sizes = torch.tensor([img.size[::-1]])
results = image_processor.post_process_object_detection(outputs, threshold=0.5, target_sizes=target_sizes)[0]
# Dibujar las detecciones en la imagen
draw = ImageDraw.Draw(img)
detecciones = []
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
box = [round(i, 2) for i in box.tolist()]
x, y, x2, y2 = box
draw.rectangle([x, y, x2, y2], outline="red", width=3)
class_name = f"Clase {label.item()} - Confianza: {round(score.item(), 2)}"
draw.text((x, y), class_name, fill="red")
detecciones.append(class_name)
return img, "\n".join(detecciones)
# Crear la interfaz y lanzarla con Gradio
gr.Interface(
fn=predict,
inputs=gr.Image(type="pil"),
outputs=[gr.Image(), gr.Text()],
title="Detector de Mapaches 🦝",
description="Este modelo detecta mapaches en imágenes usando DETR con el dataset Raccoon.",
examples=['raccoon-133.jpg', 'raccoon-108.jpg']
).launch(share=False)