Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,8 +6,54 @@ import pandas as pd
|
|
6 |
import xlsxwriter
|
7 |
from io import BytesIO
|
8 |
from collections import defaultdict
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
def is_homo_repeat(s):
|
12 |
return all(c == s[0] for c in s)
|
13 |
|
@@ -84,14 +130,13 @@ def process_protein_sequence(sequence, analysis_type, overlap=50):
|
|
84 |
fragment_repeats = find_hetero_amino_acid_repeats(fragment)
|
85 |
for k, v in fragment_repeats.items():
|
86 |
hetero_repeats[k] += v
|
87 |
-
hetero_repeats = check_boundary_repeats(fragments, hetero_repeats
|
88 |
-
new_repeats = find_new_boundary_repeats(fragments, hetero_repeats
|
89 |
for k, v in new_repeats.items():
|
90 |
hetero_repeats[k] += v
|
91 |
hetero_repeats = {k: v for k, v in hetero_repeats.items() if not is_homo_repeat(k)}
|
92 |
|
93 |
homo_repeats = find_homorepeats(sequence)
|
94 |
-
|
95 |
final_repeats = homo_repeats.copy()
|
96 |
for k, v in hetero_repeats.items():
|
97 |
final_repeats[k] += v
|
@@ -140,7 +185,8 @@ def create_excel(sequences_data, repeats, filenames):
|
|
140 |
output.seek(0)
|
141 |
return output
|
142 |
|
143 |
-
|
|
|
144 |
analysis_type = st.radio("Select analysis type:", ["Homo", "Hetero", "Both"], index=2)
|
145 |
uploaded_files = st.file_uploader("Upload Excel files", accept_multiple_files=True, type=["xlsx"])
|
146 |
|
@@ -148,29 +194,43 @@ if uploaded_files:
|
|
148 |
all_repeats = set()
|
149 |
all_sequences_data = []
|
150 |
filenames = []
|
|
|
151 |
for file in uploaded_files:
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
import xlsxwriter
|
7 |
from io import BytesIO
|
8 |
from collections import defaultdict
|
9 |
+
import hashlib
|
10 |
+
import sqlite3
|
11 |
+
import base64
|
12 |
+
|
13 |
+
# Initialize DB
|
14 |
+
def init_db():
|
15 |
+
conn = sqlite3.connect("file_cache.db")
|
16 |
+
cursor = conn.cursor()
|
17 |
+
cursor.execute('''
|
18 |
+
CREATE TABLE IF NOT EXISTS file_cache (
|
19 |
+
file_hash TEXT PRIMARY KEY,
|
20 |
+
file_name TEXT,
|
21 |
+
analysis_type TEXT,
|
22 |
+
result BLOB
|
23 |
+
)
|
24 |
+
''')
|
25 |
+
conn.commit()
|
26 |
+
conn.close()
|
27 |
+
|
28 |
+
init_db()
|
29 |
+
|
30 |
+
# Hashing function
|
31 |
+
def get_file_hash(file):
|
32 |
+
return hashlib.sha256(file.read()).hexdigest()
|
33 |
+
|
34 |
+
# Check if file hash exists in DB
|
35 |
+
def check_cache(file_hash, analysis_type):
|
36 |
+
conn = sqlite3.connect("file_cache.db")
|
37 |
+
cursor = conn.cursor()
|
38 |
+
cursor.execute("SELECT result FROM file_cache WHERE file_hash = ? AND analysis_type = ?", (file_hash, analysis_type))
|
39 |
+
row = cursor.fetchone()
|
40 |
+
conn.close()
|
41 |
+
if row:
|
42 |
+
return BytesIO(base64.b64decode(row[0]))
|
43 |
+
return None
|
44 |
+
|
45 |
+
# Store result in DB
|
46 |
+
def cache_result(file_hash, file_name, analysis_type, result_bytes):
|
47 |
+
conn = sqlite3.connect("file_cache.db")
|
48 |
+
cursor = conn.cursor()
|
49 |
+
cursor.execute(
|
50 |
+
"INSERT OR REPLACE INTO file_cache (file_hash, file_name, analysis_type, result) VALUES (?, ?, ?, ?)",
|
51 |
+
(file_hash, file_name, analysis_type, base64.b64encode(result_bytes.read()).decode('utf-8'))
|
52 |
+
)
|
53 |
+
conn.commit()
|
54 |
+
conn.close()
|
55 |
+
|
56 |
+
# === Protein Analysis Logic ===
|
57 |
def is_homo_repeat(s):
|
58 |
return all(c == s[0] for c in s)
|
59 |
|
|
|
130 |
fragment_repeats = find_hetero_amino_acid_repeats(fragment)
|
131 |
for k, v in fragment_repeats.items():
|
132 |
hetero_repeats[k] += v
|
133 |
+
hetero_repeats = check_boundary_repeats(fragments, hetero_repeats)
|
134 |
+
new_repeats = find_new_boundary_repeats(fragments, hetero_repeats)
|
135 |
for k, v in new_repeats.items():
|
136 |
hetero_repeats[k] += v
|
137 |
hetero_repeats = {k: v for k, v in hetero_repeats.items() if not is_homo_repeat(k)}
|
138 |
|
139 |
homo_repeats = find_homorepeats(sequence)
|
|
|
140 |
final_repeats = homo_repeats.copy()
|
141 |
for k, v in hetero_repeats.items():
|
142 |
final_repeats[k] += v
|
|
|
185 |
output.seek(0)
|
186 |
return output
|
187 |
|
188 |
+
# === Streamlit UI ===
|
189 |
+
st.title("Protein Repeat Analysis with Caching")
|
190 |
analysis_type = st.radio("Select analysis type:", ["Homo", "Hetero", "Both"], index=2)
|
191 |
uploaded_files = st.file_uploader("Upload Excel files", accept_multiple_files=True, type=["xlsx"])
|
192 |
|
|
|
194 |
all_repeats = set()
|
195 |
all_sequences_data = []
|
196 |
filenames = []
|
197 |
+
final_output = BytesIO()
|
198 |
for file in uploaded_files:
|
199 |
+
file.seek(0)
|
200 |
+
file_hash = get_file_hash(file)
|
201 |
+
file.seek(0)
|
202 |
+
cached = check_cache(file_hash, analysis_type)
|
203 |
+
if cached:
|
204 |
+
st.success(f"Using cached result for {file.name}")
|
205 |
+
cached_content = cached.read()
|
206 |
+
final_output.write(cached_content)
|
207 |
+
final_output.seek(0)
|
208 |
+
else:
|
209 |
+
st.info(f"Processing {file.name}...")
|
210 |
+
excel_data = pd.ExcelFile(file)
|
211 |
+
repeats, sequence_data = process_excel(excel_data, analysis_type)
|
212 |
+
if repeats is not None:
|
213 |
+
all_repeats.update(repeats)
|
214 |
+
all_sequences_data.append(sequence_data)
|
215 |
+
filenames.append(file.name)
|
216 |
+
excel_file = create_excel(all_sequences_data, all_repeats, filenames)
|
217 |
+
cache_result(file_hash, file.name, analysis_type, excel_file)
|
218 |
+
final_output = excel_file
|
219 |
+
|
220 |
+
st.download_button(
|
221 |
+
label="Download Excel file",
|
222 |
+
data=final_output,
|
223 |
+
file_name="protein_repeat_results.xlsx",
|
224 |
+
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
|
225 |
+
)
|
226 |
+
|
227 |
+
if st.checkbox("Show Results Table"):
|
228 |
+
rows = []
|
229 |
+
for file_index, file_data in enumerate(all_sequences_data):
|
230 |
+
filename = filenames[file_index]
|
231 |
+
for entry_id, protein_name, freq in file_data:
|
232 |
+
row = {"Filename": filename, "Entry ID": entry_id, "Protein Name": protein_name}
|
233 |
+
row.update({repeat: freq.get(repeat, 0) for repeat in sorted(all_repeats)})
|
234 |
+
rows.append(row)
|
235 |
+
result_df = pd.DataFrame(rows)
|
236 |
+
st.dataframe(result_df)
|