Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from diffusers import DiffusionPipeline | |
pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5") | |
pipe = pipe.to("mps") | |
# Recommended if your computer has < 64 GB of RAM | |
pipe.enable_attention_slicing() | |
prompt = "a photo of an astronaut riding a horse on mars" | |
#image = pipe(prompt).images[0] | |
text0 = 'black fluffy gorgeous dangerous cat animal creature, large orange eyes, big fluffy ears, piercing gaze, full moon, dark ambiance, best quality, extremely detailed' | |
def generation(text): | |
image = pipe(text).images[0] | |
return image | |
demo = gr.Blocks() | |
title = '# 3D print failures detection App' | |
description = 'App for detect errors in the 3D printing' | |
with demo: | |
gr.Markdown(title) | |
gr.Markdown(description) | |
with gr.Row(): | |
img_input = gr.Textbox ( label="Text 1",info="Initial text",lines=5,value=text0) | |
button = gr.Button(value="Generate") | |
with gr.Row(): | |
img_output= gr.Image() | |
button.click( generation, inputs=img_input, outputs=[img_output]) | |
if __name__ == "__main__": | |
demo.launch() |