|
import gradio as gr |
|
import torch |
|
from PIL import ImageDraw |
|
import pathlib |
|
|
|
|
|
model_path = 'model_torch.pt' |
|
model = torch.hub.load('Ultralytics/yolov5', 'custom', model_path, verbose = False) |
|
model.eval() |
|
|
|
labels = model.names |
|
|
|
colors = ["red", "blue", "green", "yellow"] |
|
|
|
def detect_objects(image): |
|
|
|
draw = ImageDraw.Draw(image) |
|
|
|
detections = model(image) |
|
|
|
probabilities = {} |
|
|
|
for detection in detections.xyxy[0]: |
|
|
|
x1, y1, x2, y2, p, category_id = detection |
|
x1, y1, x2, y2, category_id = int(x1), int(y1), int(x2), int(y2), int(category_id) |
|
draw.rectangle((x1, y1, x2, y2), outline=colors[category_id], width=4) |
|
draw.text((x1, y1), labels[category_id], colors[category_id]) |
|
probabilities[labels[category_id]] = float(p) |
|
|
|
return [image, probabilities] |
|
|
|
|
|
demo = gr.Blocks() |
|
|
|
title = '# 3D print failures detection App' |
|
description = 'App for detect errors in the 3D printing' |
|
|
|
with demo: |
|
gr.Markdown(title) |
|
gr.Markdown(description) |
|
|
|
with gr.Tabs(): |
|
with gr.TabItem('Image Upload'): |
|
with gr.Row(): |
|
|
|
with gr.Column(): |
|
img_input = gr.Image(type='pil') |
|
examples_images2 = gr.Examples(examples = [[path.as_posix()] for path in sorted(pathlib.Path('images').rglob('*.jpg'))], |
|
inputs=img_input) |
|
labels_bars = gr.Label(label = "Categories") |
|
print(labels_bars) |
|
|
|
with gr.Column(): |
|
img_output= gr.Image() |
|
|
|
img_button = gr.Button('Detect') |
|
|
|
img_button.click(detect_objects,inputs=img_input,outputs=[img_output, labels_bars]) |
|
|
|
|
|
if __name__ == "__main__": |
|
demo.launch() |