Jashan1's picture
Update app.py (#2)
2ea75a2 verified
raw
history blame
18.5 kB
import os
import io
import requests
import streamlit as st
from openai import OpenAI
from PyPDF2 import PdfReader
import urllib.parse
from dotenv import load_dotenv
from openai import OpenAI
from io import BytesIO
from streamlit_extras.colored_header import colored_header
from streamlit_extras.add_vertical_space import add_vertical_space
from streamlit_extras.switch_page_button import switch_page
import json
import pandas as pd
from st_aggrid import AgGrid, GridOptionsBuilder, GridUpdateMode, DataReturnMode
import time
import random
import aiohttp
import asyncio
from PyPDF2 import PdfWriter
load_dotenv()
# ---------------------- Configuration ----------------------
st.set_page_config(page_title="Building Regulations Chatbot", layout="wide", initial_sidebar_state="expanded")
# Load environment variables from .env file
load_dotenv()
# Set OpenAI API key
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
# ---------------------- Session State Initialization ----------------------
if 'pdf_contents' not in st.session_state:
st.session_state.pdf_contents = []
if 'chat_history' not in st.session_state:
st.session_state.chat_history = []
if 'processed_pdfs' not in st.session_state:
st.session_state.processed_pdfs = False
if 'id_counter' not in st.session_state:
st.session_state.id_counter = 0
if 'assistant_id' not in st.session_state:
st.session_state.assistant_id = None
if 'thread_id' not in st.session_state:
st.session_state.thread_id = None
if 'file_ids' not in st.session_state:
st.session_state.file_ids = []
# ---------------------- Helper Functions ----------------------
def get_vector_stores():
try:
vector_stores = client.beta.vector_stores.list()
return vector_stores
except Exception as e:
return f"Error retrieving vector stores: {str(e)}"
def fetch_pdfs(city_code):
url = f"http://91.203.213.50:5000/oereblex/{city_code}"
response = requests.get(url)
if response.status_code == 200:
data = response.json()
print("First data:", data.get('data', [])[0] if data.get('data') else None)
return data.get('data', [])
else:
st.error(f"Failed to fetch PDFs for city code {city_code}")
return None
def download_pdf(url, doc_title):
# Add 'https://' scheme if it's missing
if not url.startswith(('http://', 'https://')):
url = 'https://' + url
try:
response = requests.get(url)
response.raise_for_status() # Raise an exception for bad status codes
# Sanitize doc_title to create a valid filename
sanitized_title = ''.join(c for c in doc_title if c.isalnum() or c in (' ', '_', '-')).rstrip()
sanitized_title = sanitized_title.replace(' ', '_')
filename = f"{sanitized_title}.pdf"
# Ensure filename is unique by appending the id_counter if necessary
if os.path.exists(filename):
filename = f"{sanitized_title}_{st.session_state.id_counter}.pdf"
st.session_state.id_counter += 1
# Save the PDF content to a file
with open(filename, 'wb') as f:
f.write(response.content)
return filename
except requests.RequestException as e:
st.error(f"Failed to download PDF from {url}. Error: {str(e)}")
return None
# Helper function to upload file to OpenAI
def upload_file_to_openai(file_path):
try:
file = client.files.create(
file=open(file_path, 'rb'),
purpose='assistants'
)
return file.id
except Exception as e:
st.error(f"Failed to upload file {file_path}. Error: {str(e)}")
return None
def create_assistant():
assistant = client.beta.assistants.create(
name="Building Regulations Assistant",
instructions="You are an expert on building regulations. Use the provided documents to answer questions accurately.",
model="gpt-4o-mini",
tools=[{"type": "file_search"}]
)
st.session_state.assistant_id = assistant.id
return assistant.id
def format_response(response, citations):
"""Format the response with proper markdown structure."""
parts = ["", response]
if citations:
parts.extend(["### Citations"])
parts.extend(f"- {citation}" for citation in citations)
return "\n\n".join(parts)
def response_generator(response, citations):
"""Generator for streaming response with structured output."""
# First yield the response heade
time.sleep(0.1)
# Yield the main response word by word
words = response.split()
for i, word in enumerate(words):
yield word + " "
# Add natural pauses at punctuation
if word.endswith(('.', '!', '?', ':')):
time.sleep(0.1)
else:
time.sleep(0.05)
# If there are citations, yield them with proper formatting
if citations:
# Add some spacing before citations
yield "\n\n### Citations\n\n"
time.sleep(0.1)
for citation in citations:
yield f"- {citation}\n"
time.sleep(0.05)
def chat_with_assistant(file_ids, user_message):
print("----- Starting chat_with_assistant -----")
print("Received file_ids:", file_ids)
print("Received user_message:", user_message)
# Create attachments for each file_id
attachments = [{"file_id": file_id, "tools": [{"type": "file_search"}]} for file_id in file_ids]
print("Attachments created:", attachments)
if st.session_state.thread_id is None:
print("No existing thread_id found. Creating a new thread.")
thread = client.beta.threads.create(
messages=[
{
"role": "user",
"content": user_message,
"attachments": attachments,
}
]
)
st.session_state.thread_id = thread.id
print("New thread created with id:", st.session_state.thread_id)
else:
print(f"Existing thread_id found: {st.session_state.thread_id}. Adding message to the thread.")
message = client.beta.threads.messages.create(
thread_id=st.session_state.thread_id,
role="user",
content=user_message,
attachments=attachments
)
print("Message added to thread with id:", message.id)
try:
thread = client.beta.threads.retrieve(thread_id=st.session_state.thread_id)
print("Retrieved thread:", thread)
except Exception as e:
print(f"Error retrieving thread with id {st.session_state.thread_id}: {e}")
return "An error occurred while processing your request.", []
try:
run = client.beta.threads.runs.create_and_poll(
thread_id=thread.id, assistant_id=st.session_state.assistant_id
)
print("Run created and polled:", run)
except Exception as e:
print("Error during run creation and polling:", e)
return "An error occurred while processing your request.", []
try:
messages = list(client.beta.threads.messages.list(thread_id=thread.id, run_id=run.id))
print("Retrieved messages:", messages)
except Exception as e:
print("Error retrieving messages:", e)
return "An error occurred while retrieving messages.", []
# Process the first message content
if messages and messages[0].content:
message_content = messages[0].content[0].text
print("Raw message content:", message_content)
annotations = message_content.annotations
citations = []
seen_citations = set()
# Process annotations and citations
for index, annotation in enumerate(annotations):
message_content.value = message_content.value.replace(annotation.text, f"[{index}]")
if file_citation := getattr(annotation, "file_citation", None):
try:
cited_file = client.files.retrieve(file_citation.file_id)
citation_entry = f"[{index}] {cited_file.filename}"
if citation_entry not in seen_citations:
citations.append(citation_entry)
seen_citations.add(citation_entry)
except Exception as e:
print(f"Error retrieving cited file for annotation {index}: {e}")
# Create a container for the response with proper styling
response_container = st.container()
with response_container:
message_placeholder = st.empty()
streaming_content = ""
# Stream the response with structure
for chunk in response_generator(message_content.value, citations):
streaming_content += chunk
# Use markdown for proper formatting during streaming
message_placeholder.markdown(streaming_content + "▌")
# Final formatted response
final_formatted_response = format_response(message_content.value, citations)
message_placeholder.markdown(final_formatted_response)
return final_formatted_response, citations
else:
return "No response received from the assistant.", []
# ---------------------- Streamlit App ----------------------
# ---------------------- Custom CSS Injection ----------------------
# Inject custom CSS to style chat messages
st.markdown("""
<style>
/* Style for the chat container */
.chat-container {
display: flex;
flex-direction: column;
gap: 1.5rem;
}
/* Style for individual chat messages */
.chat-message {
margin-bottom: 1.5rem;
}
/* Style for user messages */
.chat-message.user > div:first-child {
color: #1E90FF; /* Dodger Blue for "You" */
font-weight: bold;
margin-bottom: 0.5rem;
}
/* Style for assistant messages */
.chat-message.assistant > div:first-child {
color: #32CD32; /* Lime Green for "Assistant" */
font-weight: bold;
margin-bottom: 0.5rem;
}
/* Style for the message content */
.message-content {
padding: 1rem;
border-radius: 0.5rem;
line-height: 1.5;
}
.message-content h3 {
color: #444;
margin-top: 1rem;
margin-bottom: 0.5rem;
font-size: 1.1rem;
}
.message-content ul {
margin-top: 0.5rem;
margin-bottom: 0.5rem;
padding-left: 1.5rem;
}
.message-content li {
margin-bottom: 0.25rem;
}
</style>
""", unsafe_allow_html=True)
page = st.sidebar.selectbox("Choose a page", ["Documents", "Home", "Admin"])
if page == "Home":
st.title("Building Regulations Chatbot", anchor=False)
# Sidebar improvements
with st.sidebar:
colored_header("Selected Documents", description="Documents for chat")
if 'selected_pdfs' in st.session_state and not st.session_state.selected_pdfs.empty:
for _, pdf in st.session_state.selected_pdfs.iterrows():
st.write(f"- {pdf['Doc Title']}")
else:
st.write("No documents selected. Please go to the Documents page.")
# Main chat area improvements
colored_header("Chat", description="Ask questions about building regulations")
# Chat container with custom CSS class
st.markdown('<div class="chat-container" id="chat-container">', unsafe_allow_html=True)
for chat in st.session_state.chat_history:
with st.container():
if chat['role'] == 'user':
st.markdown(f"""
<div class="chat-message user">
<div><strong>You</strong></div>
<div class="message-content">{chat['content']}</div>
</div>
""", unsafe_allow_html=True)
else:
st.markdown(f"""
<div class="chat-message assistant">
<div><strong>Assistant</strong></div>
<div class="message-content">{chat['content']}</div>
</div>
""", unsafe_allow_html=True)
st.markdown('</div>', unsafe_allow_html=True)
# Inject JavaScript to auto-scroll the chat container
st.markdown("""
<script>
const chatContainer = document.getElementById('chat-container');
if (chatContainer) {
chatContainer.scrollTop = chatContainer.scrollHeight;
}
</script>
""", unsafe_allow_html=True)
# Chat input improvements
with st.form("chat_form", clear_on_submit=True):
user_input = st.text_area("Ask a question about building regulations...", height=100)
col1, col2 = st.columns([3, 1])
with col2:
submit = st.form_submit_button("Send", use_container_width=True)
if submit and user_input.strip() != "":
# Add user message to chat history
st.session_state.chat_history.append({"role": "user", "content": user_input})
if not st.session_state.file_ids:
st.error("Please process PDFs first.")
else:
with st.spinner("Generating response..."):
try:
response, citations = chat_with_assistant(st.session_state.file_ids, user_input)
# The response is already formatted, so we can add it directly to chat history
st.session_state.chat_history.append({
"role": "assistant",
"content": response
})
except Exception as e:
st.error(f"Error generating response: {str(e)}")
# Rerun the app to update the chat display
st.rerun()
# Footer improvements
add_vertical_space(2)
st.markdown("---")
col1, col2 = st.columns(2)
with col1:
st.caption("Powered by OpenAI GPT-4 and Pinecone")
with col2:
st.caption("© 2023 Your Company Name")
elif page == "Documents":
st.title("Document Selection")
city_code_input = st.text_input("Enter city code:", key="city_code_input")
load_documents_button = st.button("Load Documents", key="load_documents_button")
if load_documents_button and city_code_input:
with st.spinner("Fetching PDFs..."):
pdfs = fetch_pdfs(city_code_input)
if pdfs:
st.session_state.available_pdfs = pdfs
st.success(f"Found {len(pdfs)} PDFs")
else:
st.error("No PDFs found")
if 'available_pdfs' in st.session_state:
st.write(f"Total PDFs: {len(st.session_state.available_pdfs)}")
# Create a DataFrame from the available PDFs
df = pd.DataFrame(st.session_state.available_pdfs)
# Select and rename only the specified columns
df = df[['municipality', 'abbreviation', 'doc_title', 'file_title', 'file_href', 'enactment_date', 'prio']]
df = df.rename(columns={
"municipality": "Municipality",
"abbreviation": "Abbreviation",
"doc_title": "Doc Title",
"file_title": "File Title",
"file_href": "File Href",
"enactment_date": "Enactment Date",
"prio": "Prio"
})
# Add a checkbox column to the DataFrame at the beginning
df.insert(0, "Select", False)
# Configure grid options
gb = GridOptionsBuilder.from_dataframe(df)
gb.configure_default_column(enablePivot=True, enableValue=True, enableRowGroup=True)
gb.configure_column("Select", header_name="Select", cellRenderer='checkboxRenderer')
gb.configure_column("File Href", cellRenderer='linkRenderer')
gb.configure_selection(selection_mode="multiple", use_checkbox=True)
gb.configure_side_bar()
gridOptions = gb.build()
# Display the AgGrid
grid_response = AgGrid(
df,
gridOptions=gridOptions,
enable_enterprise_modules=True,
update_mode=GridUpdateMode.MODEL_CHANGED,
data_return_mode=DataReturnMode.FILTERED_AND_SORTED,
fit_columns_on_grid_load=False,
)
# Get the selected rows
selected_rows = grid_response['selected_rows']
# Debug: Print the structure of selected_rows
st.write("Debug - Selected Rows Structure:", selected_rows)
if st.button("Process Selected PDFs"):
if len(selected_rows) > 0: # Check if there are any selected rows
# Convert selected_rows to a DataFrame
st.session_state.selected_pdfs = pd.DataFrame(selected_rows)
st.session_state.assistant_id = create_assistant()
with st.spinner("Processing PDFs and creating/updating assistant..."):
file_ids = []
for _, pdf in st.session_state.selected_pdfs.iterrows():
# Debug: Print each pdf item
st.write("Debug - PDF item:", pdf)
file_href = pdf['File Href']
doc_title = pdf['Doc Title']
# Pass doc_title to download_pdf
file_name = download_pdf(file_href, doc_title)
if file_name:
file_path = f"./{file_name}"
file_id = upload_file_to_openai(file_path)
if file_id:
file_ids.append(file_id)
else:
st.warning(f"Failed to upload {doc_title}. Skipping this file.")
else:
st.warning(f"Failed to download {doc_title}. Skipping this file.")
st.session_state.file_ids = file_ids
st.success("PDFs processed successfully. You can now chat on the Home page.")
else:
st.warning("Select at least one PDF.")
elif page == "Admin":
st.title("Admin Panel")
st.header("Vector Stores Information")
vector_stores = get_vector_stores()
json_vector_stores = json.dumps([vs.model_dump() for vs in vector_stores])
st.write(json_vector_stores)
# Add a button to go back to the main page