File size: 9,651 Bytes
22b6f1a
 
ab2f9e7
22b6f1a
 
ab2f9e7
22b6f1a
 
6f48228
 
 
 
 
 
22b6f1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f48228
6100bab
22b6f1a
 
 
 
 
5e9dd81
22b6f1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f48228
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification, TextClassificationPipeline
import torch
import gradio as gr
from openpyxl import load_workbook
from numpy import mean
import pandas as pd
import matplotlib.pyplot as plt

theme = gr.themes.Soft(
    primary_hue="amber",
    secondary_hue="amber",
    neutral_hue="stone",
)

# Load tokenizers and models
tokenizer = AutoTokenizer.from_pretrained("suriya7/bart-finetuned-text-summarization")
model = AutoModelForSeq2SeqLM.from_pretrained("suriya7/bart-finetuned-text-summarization")

tokenizer_keywords = AutoTokenizer.from_pretrained("transformer3/H2-keywordextractor")
model_keywords = AutoModelForSeq2SeqLM.from_pretrained("transformer3/H2-keywordextractor")

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
new_model = AutoModelForSequenceClassification.from_pretrained('roberta-rating')
new_tokenizer = AutoTokenizer.from_pretrained('roberta-rating')

classifier = TextClassificationPipeline(model=new_model, tokenizer=new_tokenizer, device=device)

label_mapping = {1: '1/5', 2: '2/5', 3: '3/5', 4: '4/5', 5: '5/5'}

# Function to display and filter the Excel workbook
def filter_xl(file, keywords):
    # Load the workbook and convert it to a DataFrame
    workbook = load_workbook(filename=file)
    sheet = workbook.active
    data = sheet.values
    columns = next(data)[0:]
    df = pd.DataFrame(data, columns=columns)
    
    if keywords:
        keyword_list = keywords.split(',')
        for keyword in keyword_list:
            df = df[df.apply(lambda row: row.astype(str).str.contains(keyword.strip(), case=False).any(), axis=1)]
    
    return df

# Function to calculate overall rating from filtered data
def calculate_rating(filtered_df):
    reviews = filtered_df.to_numpy().flatten()
    ratings = []
    for review in reviews:
        if pd.notna(review):
            rating = int(classifier(review)[0]['label'].split('_')[1])
            ratings.append(rating)
    
    return round(mean(ratings), 2), ratings

# Function to calculate results including summary, keywords, and sentiment
def calculate_results(file, keywords):
    filtered_df = filter_xl(file, keywords)
    overall_rating, ratings = calculate_rating(filtered_df)
    
    # Summarize and extract keywords from the filtered reviews
    text = " ".join(filtered_df.to_numpy().flatten())
    inputs = tokenizer([text], max_length=1024, truncation=True, return_tensors="pt")
    summary_ids = model.generate(inputs["input_ids"], num_beams=2, min_length=10, max_length=50)
    summary = tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
    summary = summary.replace("I", "They").replace("my", "their").replace("me", "them")

    inputs_keywords = tokenizer_keywords([text], max_length=1024, truncation=True, return_tensors="pt")
    summary_ids_keywords = model_keywords.generate(inputs_keywords["input_ids"], num_beams=2, min_length=0, max_length=100)
    keywords = tokenizer_keywords.batch_decode(summary_ids_keywords, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]

    # Determine overall sentiment
    sentiments = []
    for review in filtered_df.to_numpy().flatten():
        if pd.notna(review):
            sentiment = classifier(review)[0]['label']
            sentiment_label = "Positive" if sentiment == "LABEL_4" or sentiment == "LABEL_5" else "Negative" if sentiment == "LABEL_1" or sentiment == "LABEL_2" else "Neutral"
            sentiments.append(sentiment_label)
    
    overall_sentiment = "Positive" if sentiments.count("Positive") > sentiments.count("Negative") else "Negative" if sentiments.count("Negative") > sentiments.count("Positive") else "Neutral"

    return overall_rating, summary, keywords, overall_sentiment, ratings, sentiments

# Function to analyze a single review
def analyze_review(review):
    if not review.strip():
        return "Error: No text provided", "Error: No text provided", "Error: No text provided", "Error: No text provided"
    
    # Calculate rating
    rating = int(classifier(review)[0]['label'].split('_')[1])
    
    # Summarize review
    inputs = tokenizer([review], max_length=1024, truncation=True, return_tensors="pt")
    summary_ids = model.generate(inputs["input_ids"], num_beams=2, min_length=10, max_length=50)
    summary = tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
    summary = summary.replace("I", "he/she").replace("my", "his/her").replace("me", "him/her")

    # Extract keywords
    inputs_keywords = tokenizer_keywords([review], max_length=1024, truncation=True, return_tensors="pt")
    summary_ids_keywords = model_keywords.generate(inputs_keywords["input_ids"], num_beams=2, min_length=0, max_length=100)
    keywords = tokenizer_keywords.batch_decode(summary_ids_keywords, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]

    # Determine sentiment
    sentiment = classifier(review)[0]['label']
    sentiment_label = "Positive" if sentiment == "LABEL_4" or sentiment == "LABEL_5" else "Negative" if sentiment == "LABEL_1" or sentiment == "LABEL_2" else "Neutral"

    return rating, summary, keywords, sentiment_label

# Function to count rows in the filtered DataFrame
def count_rows(filtered_df):
    return len(filtered_df)

# Function to plot ratings
def plot_ratings(ratings):
    plt.figure(figsize=(10, 5))
    plt.hist(ratings, bins=range(1, 7), edgecolor='black', align='left')
    plt.xlabel('Rating')
    plt.ylabel('Frequency')
    plt.title('Distribution of Ratings')
    plt.xticks(range(1, 6))
    plt.grid(True)
    plt.savefig('ratings_distribution.png')
    return 'ratings_distribution.png'

# Function to plot sentiments
def plot_sentiments(sentiments):
    sentiment_counts = pd.Series(sentiments).value_counts()
    plt.figure(figsize=(10, 5))
    sentiment_counts.plot(kind='bar', color=['green', 'red', 'blue'])
    plt.xlabel('Sentiment')
    plt.ylabel('Frequency')
    plt.title('Distribution of Sentiments')
    plt.grid(True)
    plt.savefig('sentiments_distribution.png')
    return 'sentiments_distribution.png'

# Gradio interface
with gr.Blocks(theme=theme) as demo:
    gr.Markdown("<h1 style='text-align: center;'>Feedback and Auditing Survey AI Analyzer</h1><br>")
    with gr.Tabs():
        with gr.TabItem("Upload and Filter"):
            with gr.Row():
                with gr.Column(scale=1):
                    excel_file = gr.File(label="Upload Excel File")
                    #excel_file = gr.File(label="Upload Excel File", file_types=[".xlsx", ".xlsm", ".xltx", ".xltm"])
                    keywords_input = gr.Textbox(label="Filter by Keywords (comma-separated)")
                    display_button = gr.Button("Display and Filter Excel Data")
                    clear_button_upload = gr.Button("Clear")
                    row_count = gr.Textbox(label="Number of Rows", interactive=False)
                with gr.Column(scale=3):
                    filtered_data = gr.Dataframe(label="Filtered Excel Contents")
        
        with gr.TabItem("Calculate Results"):
            with gr.Row():
                with gr.Column():
                    overall_rating = gr.Textbox(label="Overall Rating")
                    summary = gr.Textbox(label="Summary")
                    keywords_output = gr.Textbox(label="Keywords")
                    overall_sentiment = gr.Textbox(label="Overall Sentiment")
                    calculate_button = gr.Button("Calculate Results")
                with gr.Column():
                    ratings_graph = gr.Image(label="Ratings Distribution")
                    sentiments_graph = gr.Image(label="Sentiments Distribution")
                    calculate_graph_button = gr.Button("Calculate Graph Results")
        
        with gr.TabItem("Testing Area / Write a Review"):
            with gr.Row():
                with gr.Column(scale=2):
                    review_input = gr.Textbox(label="Write your review here")
                    analyze_button = gr.Button("Analyze Review")
                    clear_button_review = gr.Button("Clear")
                with gr.Column(scale=2):
                    review_rating = gr.Textbox(label="Rating")
                    review_summary = gr.Textbox(label="Summary")
                    review_keywords = gr.Textbox(label="Keywords")
                    review_sentiment = gr.Textbox(label="Sentiment")

    display_button.click(lambda file, keywords: (filter_xl(file, keywords), count_rows(filter_xl(file, keywords))), inputs=[excel_file, keywords_input], outputs=[filtered_data, row_count])
    calculate_graph_button.click(lambda file, keywords: (*calculate_results(file, keywords)[:4], plot_ratings(calculate_results(file, keywords)[4]), plot_sentiments(calculate_results(file, keywords)[5])), inputs=[excel_file, keywords_input], outputs=[overall_rating, summary, keywords_output, overall_sentiment, ratings_graph, sentiments_graph])
    calculate_button.click(lambda file, keywords: (*calculate_results(file, keywords)[:4], plot_ratings(calculate_results(file, keywords)[4])), inputs=[excel_file, keywords_input], outputs=[overall_rating, summary, keywords_output, overall_sentiment])
    analyze_button.click(analyze_review, inputs=review_input, outputs=[review_rating, review_summary, review_keywords, review_sentiment])
    clear_button_upload.click(lambda: (""), outputs=[keywords_input])
    clear_button_review.click(lambda: ("", "", "", "", ""), outputs=[review_input, review_rating, review_summary, review_keywords, review_sentiment])

demo.launch(share=True)