Spaces:
Runtime error
Runtime error
import streamlit as st | |
from tensorflow.keras.models import load_model | |
from huggingface_hub import from_pretrained_keras | |
from PIL import Image | |
import numpy as np | |
import tensorflow as tf | |
def load_model_h5(): | |
model_path = hf_hub_download(repo_id="Jainam117/Sign_Langauge_digit_classification", | |
filename="sign_lan_digit_model.h5") | |
model = load_model(model_path) | |
return model | |
def preprocess_image(image): | |
image = image.convert("L") | |
image = image.resize((224, 224)) # Resize to 224x224, which the model expects | |
image_array = np.array(image) | |
image_array = image_array / 255.0 | |
image_array = np.expand_dims(image_array, axis=-1) | |
image_array = np.expand_dims(image_array, axis=0) | |
return image_array | |
def classify_image(model, image_array): | |
predictions = model.predict(image_array) | |
predicted_label = np.argmax(predictions, axis=1)[0] | |
return predicted_label | |
st.title("Sign Language Digit Classification") | |
st.write("Upload an image of a hand showing a digit, and the model will classify the digit.") | |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) | |
if uploaded_file is not None: | |
image = Image.open(uploaded_file) | |
st.image(image, caption="Uploaded Image", use_column_width=True) | |
model = load_model() | |
preprocessed_image = preprocess_image(image) | |
predicted_digit = classify_image(model, preprocessed_image) | |
st.write(f"Predicted Digit: {predicted_digit}") | |