Spaces:
Sleeping
Sleeping
Rollback app.py to previous version
Browse files
app.py
CHANGED
@@ -1,34 +1,10 @@
|
|
1 |
-
#Import dependencies
|
2 |
from transformers import pipeline
|
3 |
import streamlit as st
|
4 |
-
from diffusers import DiffusionPipeline
|
5 |
|
6 |
-
#Text generation pipeline
|
7 |
-
#generator = pipeline("text-generation", model="mosaicml/mpt-7b-storywriter", trust_remote_code=True)
|
8 |
-
|
9 |
-
#Summarization pipeline
|
10 |
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
11 |
|
12 |
-
|
13 |
-
#image_pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev")
|
14 |
-
|
15 |
-
# Input text
|
16 |
-
prompt = st.text_input("Enter a prompt to expand on:")
|
17 |
-
|
18 |
-
#Check if text has been entered into the prompt
|
19 |
-
if prompt:
|
20 |
-
# Generate text based on the prompt
|
21 |
-
#generated_text = generator(prompt, max_length=300, num_return_sequences=1)
|
22 |
-
#detailed_text = generated_text[0]['generated_text']
|
23 |
-
#st.write("Generated Text:")
|
24 |
-
#st.write(detailed_text)
|
25 |
-
|
26 |
-
# Summarize the generated text
|
27 |
-
summary = summarizer(prompt, max_length=130, min_length=30, do_sample=False)
|
28 |
-
summarized_text = summary[0]['summary_text']
|
29 |
-
st.write("Summarized Text:")
|
30 |
-
st.write(summarized_text)
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
1 |
from transformers import pipeline
|
2 |
import streamlit as st
|
|
|
3 |
|
|
|
|
|
|
|
|
|
4 |
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
5 |
|
6 |
+
textToParaphrase = st.text_input("Need to summarize lengthy text? Paste it here!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
if textToParaphrase:
|
9 |
+
summary = summarizer(textToParaphrase, max_length=130, min_length=30, do_sample=False)
|
10 |
+
st.write(summary[0]['summary_text']) # Displaying the summarized text in Streamlit
|