Spaces:
Sleeping
Sleeping
import gradio as gr | |
import pandas as pd | |
import torch | |
from torch.utils.data import Dataset, DataLoader | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
from transformers import BertModel | |
# ignore warnings | |
import warnings | |
warnings.filterwarnings("ignore") | |
def infer(text): | |
output_str = '' | |
for col in ['position_x', 'position_y', 'force', 'velocity_xy', 'velocity_z']: | |
model_path = f'models/bert/{col}' | |
tokenizer = AutoTokenizer.from_pretrained(model_path) | |
model = AutoModelForSequenceClassification.from_pretrained(model_path) | |
model.eval() | |
encoded_input = tokenizer(text, return_tensors='pt') | |
output = model(**encoded_input) | |
scores = output[0].detach().cpu().numpy()[0] | |
answer = ['-1', '0', '1'][scores.argmax()] | |
output_str += f'{col}: {answer}\n' | |
return output_str | |
iface = gr.Interface(fn=infer, inputs="text", outputs="text") | |
iface.launch() | |