Update app.py
Browse files
app.py
CHANGED
@@ -11,8 +11,8 @@ def predict(img):
|
|
11 |
class_map = ClassMap(['kangaroo'])
|
12 |
infer_tfms = tfms.A.Adapter([*tfms.A.resize_and_pad(size),tfms.A.Normalize()])
|
13 |
pred_dict = models.torchvision.faster_rcnn.end2end_detect(img, infer_tfms, model.to("cpu"), class_map=class_map, detection_threshold=0.5)
|
14 |
-
return pred_dict['img']
|
15 |
-
|
16 |
|
17 |
# Creamos la interfaz y la lanzamos.
|
18 |
gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(128, 128)), outputs=gr.outputs.Image(label='Imagen resultado'),examples=['00001.jpg','00002.jpg']).launch(share=False)
|
|
|
11 |
class_map = ClassMap(['kangaroo'])
|
12 |
infer_tfms = tfms.A.Adapter([*tfms.A.resize_and_pad(size),tfms.A.Normalize()])
|
13 |
pred_dict = models.torchvision.faster_rcnn.end2end_detect(img, infer_tfms, model.to("cpu"), class_map=class_map, detection_threshold=0.5)
|
14 |
+
#return pred_dict['img']
|
15 |
+
return img
|
16 |
|
17 |
# Creamos la interfaz y la lanzamos.
|
18 |
gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(128, 128)), outputs=gr.outputs.Image(label='Imagen resultado'),examples=['00001.jpg','00002.jpg']).launch(share=False)
|