face-swap / app.py
AdamOswald1's picture
Update app.py with potential fix
3f7276f
raw
history blame
10.2 kB
import gradio
from huggingface_hub import Repository
import os
from utils.utils import (
norm_crop,
estimate_norm,
inverse_estimate_norm,
transform_landmark_points,
get_lm,
)
from networks.layers import AdaIN, AdaptiveAttention
from tensorflow_addons.layers import InstanceNormalization
import numpy as np
import cv2
from scipy.ndimage import gaussian_filter
from tensorflow.keras.models import load_model
from options.swap_options import SwapOptions
token = os.environ["model_fetch"]
opt = SwapOptions().parse()
retina_repo = Repository(
local_dir="retina_model",
clone_from="felixrosberg/retinaface_resnet50",
private=True,
use_auth_token=token,
git_user="felixrosberg",
)
from retina_model.models import *
RetinaFace = load_model(
"retina_model/retinaface_res50.h5",
custom_objects={
"FPN": FPN,
"SSH": SSH,
"BboxHead": BboxHead,
"LandmarkHead": LandmarkHead,
"ClassHead": ClassHead,
},
)
arc_repo = Repository(
local_dir="arcface_model",
clone_from="felixrosberg/arcface_tf",
private=True,
use_auth_token=token,
)
ArcFace = load_model("arcface_model/arc_res50.h5")
ArcFaceE = load_model("arcface_model/arc_res50e.h5")
g_repo = Repository(
local_dir="g_model_c_hq",
clone_from="felixrosberg/affa_config_c_hq",
private=True,
use_auth_token=token,
)
G = load_model(
"g_model_c_hq/generator_t_28.h5",
custom_objects={
"AdaIN": AdaIN,
"AdaptiveAttention": AdaptiveAttention,
"InstanceNormalization": InstanceNormalization,
},
)
r_repo = Repository(
local_dir="reconstruction_attack",
clone_from="felixrosberg/reconstruction_attack",
private=True,
use_auth_token=token,
)
R = load_model(
"reconstruction_attack/reconstructor_42.h5",
custom_objects={
"AdaIN": AdaIN,
"AdaptiveAttention": AdaptiveAttention,
"InstanceNormalization": InstanceNormalization,
},
)
permuter_repo = Repository(
local_dir="identity_permuter",
clone_from="felixrosberg/identitypermuter",
private=True,
use_auth_token=token,
git_user="felixrosberg",
)
from identity_permuter.id_permuter import identity_permuter
IDP = identity_permuter(emb_size=32, min_arg=False)
IDP.load_weights("identity_permuter/id_permuter.h5")
blend_mask_base = np.zeros(shape=(256, 256, 1))
blend_mask_base[80:244, 32:224] = 1
blend_mask_base = gaussian_filter(blend_mask_base, sigma=7)
def run_inference(target, source, slider, adv_slider, settings):
try:
source = np.array(source)
target = np.array(target)
# Prepare to load video
if "anonymize" not in settings:
source_a = RetinaFace(np.expand_dims(source, axis=0)).numpy()[0]
source_h, source_w, _ = source.shape
source_lm = get_lm(source_a, source_w, source_h)
source_aligned = norm_crop(source, source_lm, image_size=256)
source_z = ArcFace.predict(
np.expand_dims(
tf.image.resize(source_aligned, [112, 112]) / 255.0, axis=0
)
)
else:
source_z = None
# read frame
im = target
im_h, im_w, _ = im.shape
im_shape = (im_w, im_h)
detection_scale = im_w // 640 if im_w > 640 else 1
faces = RetinaFace(
np.expand_dims(
cv2.resize(im, (im_w // detection_scale, im_h // detection_scale)),
axis=0,
)
).numpy()
total_img = im / 255.0
for annotation in faces:
lm_align = np.array(
[
[annotation[4] * im_w, annotation[5] * im_h],
[annotation[6] * im_w, annotation[7] * im_h],
[annotation[8] * im_w, annotation[9] * im_h],
[annotation[10] * im_w, annotation[11] * im_h],
[annotation[12] * im_w, annotation[13] * im_h],
],
dtype=np.float32,
)
# align the detected face
M, pose_index = estimate_norm(lm_align, 256, "arcface", shrink_factor=1.0)
im_aligned = (
cv2.warpAffine(im, M, (256, 256), borderValue=0.0) - 127.5
) / 127.5
if "adversarial defense" in settings:
eps = adv_slider / 200
X = tf.convert_to_tensor(np.expand_dims(im_aligned, axis=0))
with tf.GradientTape() as tape:
tape.watch(X)
X_z = ArcFaceE(tf.image.resize(X * 0.5 + 0.5, [112, 112]))
output = R([X, X_z])
loss = tf.reduce_mean(tf.abs(0 - output))
gradient = tf.sign(tape.gradient(loss, X))
adv_x = X + eps * gradient
im_aligned = tf.clip_by_value(adv_x, -1, 1)[0]
if "anonymize" in settings and "reconstruction attack" not in settings:
"""source_z = ArcFace.predict(np.expand_dims(tf.image.resize(im_aligned, [112, 112]) / 255.0, axis=0))
anon_ratio = int(512 * (slider / 100))
anon_vector = np.ones(shape=(1, 512))
anon_vector[:, :anon_ratio] = -1
np.random.shuffle(anon_vector)
source_z *= anon_vector"""
slider_weight = slider / 100
target_z = ArcFace.predict(
np.expand_dims(
tf.image.resize(im_aligned, [112, 112]) * 0.5 + 0.5, axis=0
)
)
source_z = IDP.predict(target_z)
source_z = slider_weight * source_z + (1 - slider_weight) * target_z
if "reconstruction attack" in settings:
source_z = ArcFaceE.predict(
np.expand_dims(
tf.image.resize(im_aligned, [112, 112]) * 0.5 + 0.5, axis=0
)
)
# face swap
if "reconstruction attack" not in settings:
changed_face_cage = G.predict(
[np.expand_dims(im_aligned, axis=0), source_z]
)
changed_face = changed_face_cage[0] * 0.5 + 0.5
# get inverse transformation landmarks
transformed_lmk = transform_landmark_points(M, lm_align)
# warp image back
iM, _ = inverse_estimate_norm(
lm_align, transformed_lmk, 256, "arcface", shrink_factor=1.0
)
iim_aligned = cv2.warpAffine(
changed_face, iM, im_shape, borderValue=0.0
)
# blend swapped face with target image
blend_mask = cv2.warpAffine(
blend_mask_base, iM, im_shape, borderValue=0.0
)
blend_mask = np.expand_dims(blend_mask, axis=-1)
total_img = iim_aligned * blend_mask + total_img * (1 - blend_mask)
else:
changed_face_cage = R.predict(
[np.expand_dims(im_aligned, axis=0), source_z]
)
changed_face = changed_face_cage[0] * 0.5 + 0.5
# get inverse transformation landmarks
transformed_lmk = transform_landmark_points(M, lm_align)
# warp image back
iM, _ = inverse_estimate_norm(
lm_align, transformed_lmk, 256, "arcface", shrink_factor=1.0
)
iim_aligned = cv2.warpAffine(
changed_face, iM, im_shape, borderValue=0.0
)
# blend swapped face with target image
blend_mask = cv2.warpAffine(
blend_mask_base, iM, im_shape, borderValue=0.0
)
blend_mask = np.expand_dims(blend_mask, axis=-1)
total_img = iim_aligned * blend_mask + total_img * (1 - blend_mask)
if "compare" in settings:
total_img = np.concatenate((im / 255.0, total_img), axis=1)
total_img = np.clip(total_img, 0, 1)
total_img *= 255.0
total_img = total_img.astype("uint8")
return total_img
except Exception as e:
print(e)
return None
description = (
"Performs subject agnostic identity transfer from a source face to all target faces. \n\n"
"Implementation and demo of FaceDancer, accepted to WACV 2023. \n\n"
"Pre-print: https://arxiv.org/abs/2210.10473 \n\n"
"Code: https://github.com/felixrosberg/FaceDancer \n\n"
"\n\n"
"Options:\n\n"
"-Compare returns the target image concatenated with the results.\n\n"
"-Anonymize will ignore the source image and perform an identity permutation of target faces.\n\n"
"-Reconstruction attack will attempt to invert the face swap or the anonymization.\n\n"
"-Adversarial defense will add a permutation noise that disrupts the reconstruction attack.\n\n"
"NOTE: There is no guarantees with the anonymization process currently.\n\n"
"NOTE: source image with too high resolution may not work properly!"
)
examples = [
["assets/rick.jpg", "assets/musk.jpg", 100, 10, ["compare"]],
["assets/musk.jpg", "assets/musk.jpg", 100, 10, ["anonymize"]],
]
article = """
Demo is based of recent research from my Ph.D work. Results expects to be published in the coming months.
"""
iface = gradio.Interface(
run_inference,
[
gradio.inputs.Image(shape=None, label="Target"),
gradio.inputs.Image(shape=None, label="Source"),
gradio.inputs.Slider(0, 100, default=100, label="Anonymization ratio (%)"),
gradio.inputs.Slider(
0, 100, default=100, label="Adversarial defense ratio (%)"
),
gradio.inputs.CheckboxGroup(
["compare", "anonymize", "reconstruction attack", "adversarial defense"],
label="Options",
),
],
gradio.outputs.Image(),
title="Face Swap",
description=description,
examples=examples,
article=article,
layout="vertical",
)
iface.launch()