Fix README
Browse files- app.py +81 -0
- path_analysis/__init__.py +0 -0
- path_analysis/analyse.py +416 -0
- path_analysis/data_preprocess.py +395 -0
- requirements.txt +7 -0
- setup.py +29 -0
- tests/__init__.py +0 -0
- tests/test_analyse.py +370 -0
- tests/test_preprocess.py +150 -0
- tests/test_results.py +150 -0
app.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import gradio as gr
|
3 |
+
from tifffile import imread
|
4 |
+
from PIL import Image
|
5 |
+
from path_analysis.analyse import analyse_paths
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
|
9 |
+
# Function to preview the imported image
|
10 |
+
def preview_image(file1):
|
11 |
+
if file1:
|
12 |
+
print('Uploading image', file1.name)
|
13 |
+
im = imread(file1.name)
|
14 |
+
print(im.ndim, im.shape)
|
15 |
+
if im.ndim>2:
|
16 |
+
return Image.fromarray(np.max(im, axis=0))
|
17 |
+
else:
|
18 |
+
return Image.fromarray(im)
|
19 |
+
else:
|
20 |
+
return None
|
21 |
+
|
22 |
+
|
23 |
+
with gr.Blocks() as demo:
|
24 |
+
with gr.Row():
|
25 |
+
with gr.Column():
|
26 |
+
# Inputs for cell ID, image, and path
|
27 |
+
cellid_input = gr.Textbox(label="Cell ID", placeholder="Image_1")
|
28 |
+
image_input = gr.File(label="Input foci image")
|
29 |
+
image_preview = gr.Image(label="Max projection of foci image")
|
30 |
+
image_input.change(fn=preview_image, inputs=image_input, outputs=image_preview)
|
31 |
+
path_input = gr.File(label="SNT traces file")
|
32 |
+
|
33 |
+
# Additional options wrapped in an accordion for better UI experience
|
34 |
+
with gr.Accordion("Additional options ..."):
|
35 |
+
sphere_radius = gr.Number(label="Trace sphere radius (um)", value=0.1984125, interactive=True)
|
36 |
+
peak_threshold = gr.Number(label="Peak relative threshold", value=0.4, interactive=True)
|
37 |
+
# Resolutions for xy and z axis
|
38 |
+
with gr.Row():
|
39 |
+
xy_res = gr.Number(label='xy-yesolution (um)', value=0.0396825, interactive=True)
|
40 |
+
z_res = gr.Number(label='z resolution (um)', value=0.0909184, interactive=True)
|
41 |
+
# Resolutions for xy and z axis
|
42 |
+
|
43 |
+
threshold_type = gr.Radio(["per-trace", "per-cell"], label="Threshold-type", value="per-trace", interactive=True)
|
44 |
+
use_corrected_positions = gr.Checkbox(label="Correct foci position measurements", value=True, interactive=True)
|
45 |
+
screening_distance = gr.Number(label='Screening distance (voxels)', value=10, interactive=True)
|
46 |
+
|
47 |
+
|
48 |
+
# The output column showing the result of processing
|
49 |
+
with gr.Column():
|
50 |
+
trace_output = gr.Image(label="Overlayed paths")
|
51 |
+
image_output=gr.Gallery(label="Traced paths")
|
52 |
+
plot_output=gr.Plot(label="Foci intensity traces")
|
53 |
+
data_output=gr.DataFrame(label="Detected peak data")#, "Peak 1 pos", "Peak 1 int"])
|
54 |
+
data_file_output=gr.File(label="Output data file (.csv)")
|
55 |
+
|
56 |
+
|
57 |
+
def process(cellid_input, image_input, path_input, sphere_radius, peak_threshold, xy_res, z_res, threshold_type, use_corrected_positions, screening_distance):
|
58 |
+
|
59 |
+
config = { 'sphere_radius': sphere_radius,
|
60 |
+
'peak_threshold': peak_threshold,
|
61 |
+
'xy_res': xy_res,
|
62 |
+
'z_res': z_res,
|
63 |
+
'threshold_type': threshold_type,
|
64 |
+
'use_corrected_positions': use_corrected_positions,
|
65 |
+
'screening_distance': screening_distance,
|
66 |
+
}
|
67 |
+
|
68 |
+
|
69 |
+
paths, traces, fig, extracted_peaks = analyse_paths(cellid_input, image_input.name, path_input.name, config)
|
70 |
+
extracted_peaks.to_csv('output.csv')
|
71 |
+
print('extracted', extracted_peaks)
|
72 |
+
return paths, [Image.fromarray(im) for im in traces], fig, extracted_peaks, 'output.csv'
|
73 |
+
|
74 |
+
|
75 |
+
with gr.Row():
|
76 |
+
greet_btn = gr.Button("Process")
|
77 |
+
greet_btn.click(fn=process, inputs=[cellid_input, image_input, path_input, sphere_radius, peak_threshold, xy_res, z_res, threshold_type, use_corrected_positions, screening_distance], outputs=[trace_output, image_output, plot_output, data_output, data_file_output], api_name="process")
|
78 |
+
|
79 |
+
|
80 |
+
if __name__ == "__main__":
|
81 |
+
demo.launch()
|
path_analysis/__init__.py
ADDED
File without changes
|
path_analysis/analyse.py
ADDED
@@ -0,0 +1,416 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import lxml.etree as ET
|
3 |
+
import gzip
|
4 |
+
import tifffile
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
import numpy as np
|
7 |
+
from PIL import Image, ImageDraw
|
8 |
+
import pandas as pd
|
9 |
+
from itertools import cycle
|
10 |
+
from .data_preprocess import analyse_traces
|
11 |
+
import math
|
12 |
+
import scipy.linalg as la
|
13 |
+
|
14 |
+
|
15 |
+
def get_paths_from_traces_file(traces_file):
|
16 |
+
"""
|
17 |
+
Parses the specified traces file and extracts paths and their lengths.
|
18 |
+
|
19 |
+
Args:
|
20 |
+
traces_file (str): Path to the XML traces file.
|
21 |
+
|
22 |
+
Returns:
|
23 |
+
tuple: A tuple containing a list of paths (each path is a list of tuples representing points)
|
24 |
+
and a list of corresponding path lengths.
|
25 |
+
"""
|
26 |
+
tree = ET.parse(traces_file)
|
27 |
+
root = tree.getroot()
|
28 |
+
all_paths = []
|
29 |
+
path_lengths = []
|
30 |
+
for path in root.findall('path'):
|
31 |
+
length=path.get('reallength')
|
32 |
+
path_points = []
|
33 |
+
for point in path:
|
34 |
+
path_points.append((int(point.get('x')), int(point.get('y')), int(point.get('z'))))
|
35 |
+
all_paths.append(path_points)
|
36 |
+
path_lengths.append(float(length))
|
37 |
+
return all_paths, path_lengths
|
38 |
+
|
39 |
+
|
40 |
+
|
41 |
+
def calculate_path_length_partials(point_list, voxel_size=(1,1,1)):
|
42 |
+
"""
|
43 |
+
Calculate the partial path length of a series of points.
|
44 |
+
|
45 |
+
Args:
|
46 |
+
point_list (list of tuple): List of points, each represented as a tuple of coordinates (x, y, z).
|
47 |
+
voxel_size (tuple, optional): Size of the voxel in each dimension (x, y, z). Defaults to (1, 1, 1).
|
48 |
+
|
49 |
+
Returns:
|
50 |
+
numpy.ndarray: Array of cumulative partial path lengths at each point.
|
51 |
+
"""
|
52 |
+
# Simple calculation
|
53 |
+
section_lengths = [0.0]
|
54 |
+
s = np.array(voxel_size)
|
55 |
+
for i in range(len(point_list)-1):
|
56 |
+
# Euclidean distance between successive points
|
57 |
+
section_lengths.append(la.norm(s * (np.array(point_list[i+1]) - np.array(point_list[i]))))
|
58 |
+
return np.cumsum(section_lengths)
|
59 |
+
|
60 |
+
|
61 |
+
def visualise_ordering(points_list, dim, wr=5, wc=5):
|
62 |
+
"""
|
63 |
+
Visualize the ordering of points in an image.
|
64 |
+
|
65 |
+
Args:
|
66 |
+
points_list (list): List of points to be visualized.
|
67 |
+
dim (tuple): Dimensions of the image (rows, columns, channels).
|
68 |
+
wr (int, optional): Width of the region to visualize around the point in the row direction. Defaults to 5.
|
69 |
+
wc (int, optional): Width of the region to visualize around the point in the column direction. Defaults to 5.
|
70 |
+
|
71 |
+
Returns:
|
72 |
+
np.array: An image array with visualized points.
|
73 |
+
"""
|
74 |
+
# Visualizes the ordering of the points in the list on a blank image.
|
75 |
+
rdim, cdim, _ = dim
|
76 |
+
vis = np.zeros((rdim, cdim, 3), dtype=np.uint8)
|
77 |
+
|
78 |
+
def get_col(i):
|
79 |
+
r = int(255 * i/len(points_list))
|
80 |
+
g = 255 - r
|
81 |
+
return r, g, 0
|
82 |
+
|
83 |
+
for n, p in enumerate(points_list):
|
84 |
+
c, r, _ = map(int, p)
|
85 |
+
vis[max(0,r-wr):min(rdim,r+wr+1),max(0,c-wc):min(cdim,c+wc+1)] = get_col(n)
|
86 |
+
|
87 |
+
return vis
|
88 |
+
|
89 |
+
# A color map for paths
|
90 |
+
col_map = [(255,0,0), (0,255,0), (0,0,255), (255,255,0), (255,0,255), (0,255,255),
|
91 |
+
(255,127,0), (255, 0, 127), (127, 255, 0), (0, 255, 127), (127,0,255), (0,127,255)]
|
92 |
+
|
93 |
+
def draw_paths(all_paths, foci_stack, foci_index=None, r=3, screened_foci_data=None):
|
94 |
+
"""
|
95 |
+
Draws paths on the provided image stack and overlays markers for the foci
|
96 |
+
|
97 |
+
Args:
|
98 |
+
all_paths (list): List of paths where each path is a list of points.
|
99 |
+
foci_stack (np.array): 3D numpy array representing the image stack.
|
100 |
+
foci_index (list, optional): List of list of focus indices (along each path). Defaults to None.
|
101 |
+
r (int, optional): Radius for the ellipse or line drawing around the focus. Defaults to 3.
|
102 |
+
screened_foci_data (list, optional): List of RemovedPeakData for screened foci
|
103 |
+
Returns:
|
104 |
+
PIL.Image.Image: An image with the drawn paths.
|
105 |
+
"""
|
106 |
+
im = np.max(foci_stack, axis=0)
|
107 |
+
im = (im/np.max(im)*255).astype(np.uint8)
|
108 |
+
im = np.dstack((im,)*3)
|
109 |
+
im = Image.fromarray(im)
|
110 |
+
draw = ImageDraw.Draw(im)
|
111 |
+
for i, (p, col) in enumerate(zip(all_paths, cycle(col_map))):
|
112 |
+
draw.line([(u[0], u[1]) for u in p], fill=col)
|
113 |
+
draw.text((p[0][0], p[0][1]), str(i+1), fill=col)
|
114 |
+
|
115 |
+
if screened_foci_data is not None:
|
116 |
+
for i, removed_peaks in enumerate(screened_foci_data):
|
117 |
+
for p in removed_peaks:
|
118 |
+
u = all_paths[i][p.idx]
|
119 |
+
v = all_paths[p.screening_peak[0]][p.screening_peak[1]]
|
120 |
+
draw.line((int(u[0]), int(u[1]), int(v[0]), int(v[1])), fill=(127,127,127), width=2)
|
121 |
+
|
122 |
+
if foci_index is not None:
|
123 |
+
for i, (idx, p, col) in enumerate(zip(foci_index, all_paths, cycle(col_map))):
|
124 |
+
if len(idx):
|
125 |
+
for j in idx:
|
126 |
+
draw.line((int(p[j][0]-r), int(p[j][1]), int(p[j][0]+r), int(p[j][1])), fill=col, width=2)
|
127 |
+
draw.line((int(p[j][0]), int(p[j][1]-r), int(p[j][0]), int(p[j][1]+r)), fill=col, width=2)
|
128 |
+
return im
|
129 |
+
|
130 |
+
|
131 |
+
def measure_from_mask(mask, measure_stack):
|
132 |
+
"""
|
133 |
+
Compute the sum of measure_stack values where the mask is equal to 1.
|
134 |
+
|
135 |
+
Args:
|
136 |
+
mask (numpy.ndarray): Binary mask where the measurement should be applied.
|
137 |
+
measure_stack (numpy.ndarray): Stack of measurements.
|
138 |
+
|
139 |
+
Returns:
|
140 |
+
measure_stack.dtype: Sum of measure_stack values where the mask is 1.
|
141 |
+
"""
|
142 |
+
return np.sum(mask * measure_stack)
|
143 |
+
|
144 |
+
# Max of measure_stack over region where mask==1
|
145 |
+
def max_from_mask(mask, measure_stack):
|
146 |
+
"""
|
147 |
+
Compute the maximum of measure_stack values where the mask is equal to 1.
|
148 |
+
|
149 |
+
Args:
|
150 |
+
mask (numpy.ndarray): Binary mask where the measurement should be applied.
|
151 |
+
measure_stack (numpy.ndarray): Stack of measurements.
|
152 |
+
|
153 |
+
Returns:
|
154 |
+
measure_stack.dtype: Maximum value of measure_stack where the mask is 1.
|
155 |
+
"""
|
156 |
+
return np.max(mask * measure_stack)
|
157 |
+
|
158 |
+
def make_mask_s(p, melem, measure_stack):
|
159 |
+
"""
|
160 |
+
Translate a mask to point p, ensuring correct treatment near the edges of the measure_stack.
|
161 |
+
|
162 |
+
Args:
|
163 |
+
p (tuple): Target point (r, c, z).
|
164 |
+
melem (numpy.ndarray): Structuring element for the mask.
|
165 |
+
measure_stack (numpy.ndarray): Stack of measurements.
|
166 |
+
|
167 |
+
Returns:
|
168 |
+
tuple: A tuple containing the translated mask and a section of the measure_stack.
|
169 |
+
"""
|
170 |
+
|
171 |
+
|
172 |
+
#
|
173 |
+
|
174 |
+
R = [u//2 for u in melem.shape]
|
175 |
+
|
176 |
+
r, c, z = p
|
177 |
+
|
178 |
+
mask = np.zeros(melem.shape)
|
179 |
+
|
180 |
+
m_data = np.zeros(melem.shape)
|
181 |
+
s = measure_stack.shape
|
182 |
+
o_1, o_2, o_3 = max(R[0]-r, 0), max(R[1]-c, 0), max(R[2]-z,0)
|
183 |
+
e_1, e_2, e_3 = min(R[0]-r+s[0], 2*R[0]+1), min(R[1]-c+s[1], 2*R[1]+1), min(R[2]-z+s[2], 2*R[2]+1)
|
184 |
+
m_data[o_1:e_1,o_2:e_2,o_3:e_3] = measure_stack[max(r-R[0],0):min(r+R[0]+1,s[0]),max(c-R[1],0):min(c+R[1]+1,s[1]),max(z-R[2],0):min(z+R[2]+1, s[2])]
|
185 |
+
mask[o_1:e_1,o_2:e_2,o_3:e_3] = melem[o_1:e_1,o_2:e_2,o_3:e_3]
|
186 |
+
|
187 |
+
|
188 |
+
return mask, m_data
|
189 |
+
|
190 |
+
|
191 |
+
def measure_at_point(p, melem, measure_stack, op='mean'):
|
192 |
+
"""
|
193 |
+
Measure the mean or max value of measure_stack around a specific point using a structuring element.
|
194 |
+
|
195 |
+
Args:
|
196 |
+
p (tuple): Target point (r, c, z).
|
197 |
+
melem (numpy.ndarray): Structuring element for the mask.
|
198 |
+
measure_stack (numpy.ndarray): Stack of measurements.
|
199 |
+
op (str, optional): Operation to be applied; either 'mean' or 'max'. Default is 'mean'.
|
200 |
+
|
201 |
+
Returns:
|
202 |
+
float: Measured value based on the specified operation.
|
203 |
+
"""
|
204 |
+
|
205 |
+
p = map(int, p)
|
206 |
+
if op=='mean':
|
207 |
+
mask, m_data = make_mask_s(p, melem, measure_stack)
|
208 |
+
melem_size = np.sum(mask)
|
209 |
+
return float(measure_from_mask(mask, m_data) / melem_size)
|
210 |
+
else:
|
211 |
+
mask, m_data = make_mask_s(p, melem, measure_stack)
|
212 |
+
return float(max_from_mask(mask, m_data))
|
213 |
+
|
214 |
+
# Generate spherical region
|
215 |
+
def make_sphere(R=5, z_scale_ratio=2.3):
|
216 |
+
"""
|
217 |
+
Generate a binary representation of a sphere in 3D space.
|
218 |
+
|
219 |
+
Args:
|
220 |
+
R (int, optional): Radius of the sphere. Default is 5. Centred on the centre of the middle voxel.
|
221 |
+
Includes all voxels whose centre is precisely R from the middle voxel.
|
222 |
+
z_scale_ratio (float, optional): Scaling factor for the z-axis. Default is 2.3.
|
223 |
+
|
224 |
+
Returns:
|
225 |
+
numpy.ndarray: Binary representation of the sphere.
|
226 |
+
"""
|
227 |
+
R_z = int(math.ceil(R/z_scale_ratio))
|
228 |
+
x, y, z = np.ogrid[-R:R+1, -R:R+1, -R_z:R_z+1]
|
229 |
+
sphere = x**2 + y**2 + (z_scale_ratio * z)**2 <= R**2
|
230 |
+
return sphere
|
231 |
+
|
232 |
+
# Measure the values of measure_stack at each of the points of points_list in turn.
|
233 |
+
# Measurement is the mean / max (specified by op) on the spherical region about each point
|
234 |
+
def measure_all_with_sphere(points_list, measure_stack, op='mean', R=5, z_scale_ratio=2.3):
|
235 |
+
"""
|
236 |
+
Measure the values of measure_stack at each point in a list using a spherical region.
|
237 |
+
|
238 |
+
Args:
|
239 |
+
points_list (list): List of points (r, c, z) to be measured.
|
240 |
+
measure_stack (numpy.ndarray): Stack of measurements.
|
241 |
+
op (str, optional): Operation to be applied; either 'mean' or 'max'. Default is 'mean'.
|
242 |
+
R (int, optional): Radius of the sphere. Default is 5.
|
243 |
+
z_scale_ratio (float, optional): Scaling factor for the z-axis. Default is 2.3.
|
244 |
+
|
245 |
+
Returns:
|
246 |
+
list: List of measured values for each point.
|
247 |
+
"""
|
248 |
+
melem = make_sphere(R, z_scale_ratio)
|
249 |
+
measure_func = lambda p: measure_at_point(p, melem, measure_stack, op)
|
250 |
+
return list(map(measure_func, points_list))
|
251 |
+
|
252 |
+
|
253 |
+
# Measure fluorescence levels along ordered skeleton
|
254 |
+
def measure_chrom2(path, intensity, config):
|
255 |
+
"""
|
256 |
+
Measure fluorescence levels along an ordered skeleton.
|
257 |
+
|
258 |
+
Args:
|
259 |
+
path (list): List of ordered path points (r, c, z).
|
260 |
+
intensity (numpy.ndarray): 3D fluorescence data.
|
261 |
+
config (dict): Configuration dictionary containing 'z_res', 'xy_res', and 'sphere_radius' values.
|
262 |
+
|
263 |
+
Returns:
|
264 |
+
tuple: A tuple containing the visualization, mean measurements, and max measurements along the path.
|
265 |
+
"""
|
266 |
+
# Calculate size of spheroid used for measurement
|
267 |
+
scale_ratio = config['z_res']/config['xy_res']
|
268 |
+
sphere_xy_radius = int(math.ceil(config['sphere_radius']/config['xy_res']))
|
269 |
+
|
270 |
+
vis = visualise_ordering(path, dim=intensity.shape, wr=sphere_xy_radius, wc=sphere_xy_radius)
|
271 |
+
|
272 |
+
measurements = measure_all_with_sphere(path, intensity, op='mean', R=sphere_xy_radius, z_scale_ratio=scale_ratio)
|
273 |
+
measurements_max = measure_all_with_sphere(path, intensity, op='max', R=sphere_xy_radius, z_scale_ratio=scale_ratio)
|
274 |
+
|
275 |
+
|
276 |
+
return vis, measurements, measurements_max
|
277 |
+
|
278 |
+
def extract_peaks(cell_id, all_paths, path_lengths, measured_traces, config):
|
279 |
+
"""
|
280 |
+
Extract peak information from given traces and compile them into a DataFrame.
|
281 |
+
|
282 |
+
Args:
|
283 |
+
- cell_id (int or str): Identifier for the cell being analyzed.
|
284 |
+
- all_paths (list of lists): Contains ordered path points for multiple paths.
|
285 |
+
- path_lengths (list of floats): List containing lengths of each path in all_paths.
|
286 |
+
- measured_traces (list of lists): Contains fluorescence measurement values along the paths.
|
287 |
+
- config (dict): Configuration dictionary containing:
|
288 |
+
- 'peak_threshold': Threshold value to determine a peak in the trace.
|
289 |
+
- 'sphere_radius': Radius of the sphere used in fluorescence measurement.
|
290 |
+
|
291 |
+
Returns:
|
292 |
+
- pd.DataFrame: DataFrame containing peak information for each path.
|
293 |
+
- list of lists: Absolute intensities of the detected foci.
|
294 |
+
- list of lists: Index positions of the detected foci.
|
295 |
+
- list of lists: Absolute focus intensity threshold for each trace.
|
296 |
+
- list of numpy.ndarray: For each trace, distances of each point from start of trace in microns
|
297 |
+
"""
|
298 |
+
|
299 |
+
n_paths = len(all_paths)
|
300 |
+
|
301 |
+
data = []
|
302 |
+
foci_absolute_intensity, foci_position, foci_position_index, screened_foci_data, trace_median_intensities, trace_thresholds = analyse_traces(all_paths, path_lengths, measured_traces, config)
|
303 |
+
|
304 |
+
# Normalize foci intensities (for quantification) using trace medians as estimates of background
|
305 |
+
foci_intensities = []
|
306 |
+
for path_foci_abs_int, tmi in zip(foci_absolute_intensity, trace_median_intensities):
|
307 |
+
foci_intensities.extend(list(path_foci_abs_int - tmi))
|
308 |
+
|
309 |
+
# Divide all foci intensities by the mean within the cell
|
310 |
+
mean_intensity = np.mean(foci_intensities)
|
311 |
+
trace_positions = []
|
312 |
+
|
313 |
+
for i in range(n_paths):
|
314 |
+
|
315 |
+
# Calculate real (Euclidean) distance of each point along the traced path
|
316 |
+
pl = calculate_path_length_partials(all_paths[i], (config['xy_res'], config['xy_res'], config['z_res']))
|
317 |
+
|
318 |
+
|
319 |
+
path_data = { 'Cell_ID':cell_id,
|
320 |
+
'Trace': i+1,
|
321 |
+
'SNT_trace_length(um)': path_lengths[i],
|
322 |
+
'Measured_trace_length(um)': pl[-1],
|
323 |
+
'Trace_median_intensity': trace_median_intensities[i],
|
324 |
+
'Detection_sphere_radius(um)': config['sphere_radius'],
|
325 |
+
'Screening_distance(voxels)': config['screening_distance'],
|
326 |
+
'Foci_ID_threshold': config['peak_threshold'],
|
327 |
+
'Trace_foci_number': len(foci_position_index[i]) }
|
328 |
+
for j, (idx, u,v) in enumerate(zip(foci_position_index[i], foci_position[i], foci_absolute_intensity[i])):
|
329 |
+
if config['use_corrected_positions']:
|
330 |
+
# Use the calculated position along the traced path
|
331 |
+
path_data[f'Foci_{j+1}_position(um)'] = pl[idx]
|
332 |
+
else:
|
333 |
+
# Use the measured trace length (from SNT), and assume all steps of path are approximately the same length
|
334 |
+
path_data[f'Foci_{j+1}_position(um)'] = u
|
335 |
+
# The original measured intensity (mean in spheroid around detected peak)
|
336 |
+
path_data[f'Foci_{j+1}_absolute_intensity'] = v
|
337 |
+
# Measure relative intensity by removing per-trace background and dividing by cell total
|
338 |
+
path_data[f'Foci_{j+1}_relative_intensity'] = (v - trace_median_intensities[i])/mean_intensity
|
339 |
+
data.append(path_data)
|
340 |
+
trace_positions.append(pl)
|
341 |
+
return pd.DataFrame(data), foci_absolute_intensity, foci_position_index, screened_foci_data, trace_thresholds, trace_positions
|
342 |
+
|
343 |
+
|
344 |
+
def analyse_paths(cell_id,
|
345 |
+
foci_file,
|
346 |
+
traces_file,
|
347 |
+
config
|
348 |
+
):
|
349 |
+
"""
|
350 |
+
Analyzes paths for the given cell ID using provided foci and trace files.
|
351 |
+
|
352 |
+
Args:
|
353 |
+
cell_id (int/str): Identifier for the cell.
|
354 |
+
foci_file (str): Path to the foci image file.
|
355 |
+
traces_file (str): Path to the XML traces file.
|
356 |
+
config (dict): Configuration dictionary containing necessary parameters such as resolutions and thresholds.
|
357 |
+
|
358 |
+
Returns:
|
359 |
+
tuple: A tuple containing an overlay image of the traces, visualization images for each trace,
|
360 |
+
a figure with plotted measurements, and a dataframe with extracted peaks.
|
361 |
+
"""
|
362 |
+
|
363 |
+
|
364 |
+
# Read stack
|
365 |
+
|
366 |
+
foci_stack = tifffile.imread(foci_file)
|
367 |
+
|
368 |
+
# If 2D add additional (z) dimension
|
369 |
+
if foci_stack.ndim==2:
|
370 |
+
foci_stack = foci_stack[None,:,:]
|
371 |
+
|
372 |
+
all_paths, path_lengths = get_paths_from_traces_file(traces_file)
|
373 |
+
|
374 |
+
all_trace_vis = [] # Per-path visualizations
|
375 |
+
all_m = [] # Per-path measured intensities
|
376 |
+
for p in all_paths:
|
377 |
+
# Measure intensity along path - transpose the stack ZYX -> XYZ
|
378 |
+
vis, m, _ = measure_chrom2(p,foci_stack.transpose(2,1,0), config)
|
379 |
+
all_trace_vis.append(vis)
|
380 |
+
all_m.append(m)
|
381 |
+
|
382 |
+
|
383 |
+
# Extract all data from paths and traces
|
384 |
+
extracted_peaks, foci_absolute_intensity, foci_pos_index, screened_foci_data, trace_thresholds, trace_positions = extract_peaks(cell_id, all_paths, path_lengths, all_m, config)
|
385 |
+
|
386 |
+
# Plot per-path measured intensities and indicate foci
|
387 |
+
n_cols = 2
|
388 |
+
n_rows = (len(all_paths)+n_cols-1)//n_cols
|
389 |
+
fig, ax = plt.subplots(n_rows,n_cols, figsize=(5*n_cols, 3*n_rows))
|
390 |
+
ax = ax.flatten()
|
391 |
+
|
392 |
+
for i, m in enumerate(all_m):
|
393 |
+
ax[i].set_title(f'Trace {i+1}')
|
394 |
+
ax[i].plot(trace_positions[i], m)
|
395 |
+
if len(foci_pos_index[i]):
|
396 |
+
# Plot detected foci
|
397 |
+
ax[i].plot(trace_positions[i][foci_pos_index[i]], np.array(m)[foci_pos_index[i]], 'rx')
|
398 |
+
|
399 |
+
if len(screened_foci_data[i]):
|
400 |
+
# Indicate screened foci by gray circles on plots
|
401 |
+
screened_foci_pos_index = [u.idx for u in screened_foci_data[i]]
|
402 |
+
ax[i].plot(trace_positions[i][screened_foci_pos_index], np.array(m)[screened_foci_pos_index], color=(0.5,0.5,0.5), marker='o', linestyle='None')
|
403 |
+
|
404 |
+
# Show per-trace intensity thresholds with red dotted lines
|
405 |
+
if trace_thresholds[i] is not None:
|
406 |
+
ax[i].axhline(trace_thresholds[i], c='r', ls=':')
|
407 |
+
ax[i].set_xlabel('Distance from start (um)')
|
408 |
+
ax[i].set_ylabel('Intensity')
|
409 |
+
# Hide excess plots
|
410 |
+
for i in range(len(all_m), n_cols*n_rows):
|
411 |
+
ax[i].axis('off')
|
412 |
+
|
413 |
+
plt.tight_layout()
|
414 |
+
trace_overlay = draw_paths(all_paths, foci_stack, foci_index=foci_pos_index, screened_foci_data=screened_foci_data)
|
415 |
+
|
416 |
+
return trace_overlay, all_trace_vis, fig, extracted_peaks
|
path_analysis/data_preprocess.py
ADDED
@@ -0,0 +1,395 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
from dataclasses import dataclass
|
4 |
+
import numpy as np
|
5 |
+
import scipy.linalg as la
|
6 |
+
from scipy.signal import find_peaks
|
7 |
+
from math import ceil
|
8 |
+
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
def thin_peaks(peak_list, dmin=10, voxel_size=(1,1,1), return_larger_peaks=False):
|
13 |
+
"""
|
14 |
+
Remove peaks within a specified distance of each other, retaining the peak with the highest intensity.
|
15 |
+
|
16 |
+
Args:
|
17 |
+
- peak_list (list of PeakData): Each element contains:
|
18 |
+
- pos (list of float): 3D coordinates of the peak.
|
19 |
+
- intensity (float): The intensity value of the peak.
|
20 |
+
- key (tuple): A unique identifier or index for the peak (#trace, #peak)
|
21 |
+
- dmin (float, optional): Minimum distance between peaks. peaks closer than this threshold will be thinned. Defaults to 10.
|
22 |
+
- return_larger_peaks (bool, optional): Indicate larger peak for each thinned peak
|
23 |
+
|
24 |
+
Returns:
|
25 |
+
- list of tuples: A list containing keys of the removed peaks.
|
26 |
+
if return_larger_peaks
|
27 |
+
- list of tuples: A list containing the keys of the larger peak causing the peak to be removed
|
28 |
+
|
29 |
+
Notes:
|
30 |
+
- The function uses the L2 norm (Euclidean distance) to compute the distance between peaks.
|
31 |
+
- When two peaks are within `dmin` distance, the peak with the lower intensity is removed.
|
32 |
+
"""
|
33 |
+
removed_peaks = []
|
34 |
+
removed_larger_peaks = []
|
35 |
+
for i in range(len(peak_list)):
|
36 |
+
if peak_list[i].key in removed_peaks:
|
37 |
+
continue
|
38 |
+
for j in range(len(peak_list)):
|
39 |
+
if i==j:
|
40 |
+
continue
|
41 |
+
if peak_list[j].key in removed_peaks:
|
42 |
+
continue
|
43 |
+
d = (np.array(peak_list[i].pos) - np.array(peak_list[j].pos))*np.array(voxel_size)
|
44 |
+
d = la.norm(d)
|
45 |
+
if d<dmin:
|
46 |
+
hi = peak_list[i].intensity
|
47 |
+
hj = peak_list[j].intensity
|
48 |
+
if hi<hj:
|
49 |
+
removed_peaks.append(peak_list[i].key)
|
50 |
+
removed_larger_peaks.append(peak_list[j].key)
|
51 |
+
break
|
52 |
+
else:
|
53 |
+
removed_peaks.append(peak_list[j].key)
|
54 |
+
removed_larger_peaks.append(peak_list[i].key)
|
55 |
+
|
56 |
+
if return_larger_peaks:
|
57 |
+
return removed_peaks, removed_larger_peaks
|
58 |
+
else:
|
59 |
+
return removed_peaks
|
60 |
+
|
61 |
+
|
62 |
+
@dataclass
|
63 |
+
class CellData(object):
|
64 |
+
"""Represents data related to a single cell.
|
65 |
+
|
66 |
+
Attributes:
|
67 |
+
pathdata_list (list): A list of PathData objects representing the various paths associated with the cell.
|
68 |
+
"""
|
69 |
+
pathdata_list: list
|
70 |
+
|
71 |
+
@dataclass
|
72 |
+
class RemovedPeakData(object):
|
73 |
+
"""Represents data related to a removed peak
|
74 |
+
|
75 |
+
Attributes:
|
76 |
+
idx (int): Index of peak along path
|
77 |
+
screening_peak (tuple): (path_idx, position along path) for screening peak
|
78 |
+
"""
|
79 |
+
idx: int
|
80 |
+
screening_peak: tuple
|
81 |
+
|
82 |
+
@dataclass
|
83 |
+
class PathData(object):
|
84 |
+
"""Represents data related to a specific path in the cell.
|
85 |
+
|
86 |
+
This dataclass encapsulates information about the peaks,
|
87 |
+
the defining points, the fluorescence values, and the path length of a specific path.
|
88 |
+
|
89 |
+
Attributes: peaks (list): List of peaks in the path (indicies of positions in points, o_intensity).
|
90 |
+
removed_peaks (list): List of peaks in the path which have been removed because of a nearby larger peak
|
91 |
+
points (list): List of points defining the path.
|
92 |
+
o_intensity (list): List of (unnormalized) fluorescence intensity values along the path
|
93 |
+
SC_length (float): Length of the path.
|
94 |
+
|
95 |
+
"""
|
96 |
+
peaks: list
|
97 |
+
removed_peaks: list
|
98 |
+
points: list
|
99 |
+
o_intensity: list
|
100 |
+
SC_length: float
|
101 |
+
|
102 |
+
@dataclass
|
103 |
+
class PeakData(object):
|
104 |
+
pos: tuple
|
105 |
+
intensity: float
|
106 |
+
key: tuple
|
107 |
+
|
108 |
+
|
109 |
+
def find_peaks2(v, distance=5, prominence=0.5):
|
110 |
+
"""
|
111 |
+
Find peaks in a 1D array with extended boundary handling.
|
112 |
+
|
113 |
+
The function pads the input array at both ends to handle boundary peaks. It then identifies peaks in the extended array
|
114 |
+
and maps them back to the original input array.
|
115 |
+
|
116 |
+
Args:
|
117 |
+
- v (numpy.ndarray): 1D input array in which to find peaks.
|
118 |
+
- distance (int, optional): Minimum number of array elements that separate two peaks. Defaults to 5.
|
119 |
+
- prominence (float, optional): Minimum prominence required for a peak to be identified. Defaults to 0.5.
|
120 |
+
|
121 |
+
Returns:
|
122 |
+
- list of int: List containing the indices of the identified peaks in the original input array.
|
123 |
+
- dict: Information about the properties of the identified peaks (as returned by scipy.signal.find_peaks).
|
124 |
+
|
125 |
+
"""
|
126 |
+
pad = int(ceil(distance))+1
|
127 |
+
v_ext = np.concatenate([np.ones((pad,), dtype=v.dtype)*np.min(v), v, np.ones((pad,), dtype=v.dtype)*np.min(v)])
|
128 |
+
|
129 |
+
assert(len(v_ext) == len(v)+2*pad)
|
130 |
+
peaks, _ = find_peaks(v_ext, distance=distance, prominence=prominence)
|
131 |
+
peaks = peaks - pad
|
132 |
+
n_peaks = []
|
133 |
+
for i in peaks:
|
134 |
+
if 0<=i<len(v):
|
135 |
+
n_peaks.append(i)
|
136 |
+
else:
|
137 |
+
raise Exception
|
138 |
+
return n_peaks, _
|
139 |
+
|
140 |
+
|
141 |
+
def process_cell_traces(all_paths, path_lengths, measured_trace_fluorescence, dmin=10):
|
142 |
+
"""
|
143 |
+
Process traces of cells to extract peak information and organize the data.
|
144 |
+
|
145 |
+
The function normalizes fluorescence data, finds peaks, refines peak information,
|
146 |
+
removes unwanted peaks that might be due to close proximity of bright peaks from
|
147 |
+
other paths, and organizes all the information into a structured data format.
|
148 |
+
|
149 |
+
Args:
|
150 |
+
all_paths (list of list of tuples): A list containing paths, where each path is
|
151 |
+
represented as a list of 3D coordinate tuples.
|
152 |
+
path_lengths (list of float): List of path lengths corresponding to the provided paths.
|
153 |
+
measured_trace_fluorescence (list of list of float): A list containing fluorescence
|
154 |
+
data corresponding to each path point.
|
155 |
+
dmin (float): Distance below which brighter peaks screen less bright ones.
|
156 |
+
|
157 |
+
Returns:
|
158 |
+
CellData: An object containing organized peak and path data for a given cell.
|
159 |
+
|
160 |
+
Note:
|
161 |
+
- The function assumes that each path and its corresponding length and fluorescence data
|
162 |
+
are positioned at the same index in their respective lists.
|
163 |
+
"""
|
164 |
+
|
165 |
+
cell_peaks = []
|
166 |
+
|
167 |
+
for points, o_intensity in zip(all_paths, measured_trace_fluorescence):
|
168 |
+
|
169 |
+
# For peak determination normalize each trace to have mean zero and s.d. 1
|
170 |
+
intensity_normalized = (o_intensity - np.mean(o_intensity))/np.std(o_intensity)
|
171 |
+
|
172 |
+
# Find peaks - these will be further refined later
|
173 |
+
p,_ = find_peaks2(intensity_normalized, distance=5, prominence=0.5*np.std(intensity_normalized))
|
174 |
+
peaks = np.array(p, dtype=np.int32)
|
175 |
+
|
176 |
+
# Store peak data - using original values, not normalized ones
|
177 |
+
peak_mean_heights = [ o_intensity[u] for u in peaks ]
|
178 |
+
peak_points = [ points[u] for u in peaks ]
|
179 |
+
|
180 |
+
cell_peaks.append((peaks, peak_points, peak_mean_heights))
|
181 |
+
|
182 |
+
# Eliminate peaks which have another larger peak nearby (in 3D space, on any chromosome).
|
183 |
+
# This aims to remove small peaks in the mean intensity generated when an SC passes close
|
184 |
+
# to a bright peak on another SC - this is nearby in space, but brighter.
|
185 |
+
|
186 |
+
to_thin = []
|
187 |
+
for k in range(len(cell_peaks)):
|
188 |
+
for u in range(len(cell_peaks[k][0])):
|
189 |
+
to_thin.append(PeakData(pos=cell_peaks[k][1][u], intensity=cell_peaks[k][2][u], key=(k, u)))
|
190 |
+
|
191 |
+
# Exclude any peak with a nearby brighter peak (on any SC)
|
192 |
+
removed_peaks, removed_larger_peaks = thin_peaks(to_thin, return_larger_peaks=True, dmin=dmin)
|
193 |
+
|
194 |
+
# Clean up and remove these peaks
|
195 |
+
new_cell_peaks = []
|
196 |
+
removed_cell_peaks = []
|
197 |
+
removed_cell_peaks_larger = []
|
198 |
+
for path_idx in range(len(cell_peaks)):
|
199 |
+
path_retained_peaks = []
|
200 |
+
path_removed_peaks = []
|
201 |
+
path_peaks = cell_peaks[path_idx][0]
|
202 |
+
|
203 |
+
for peak_idx in range(len(path_peaks)):
|
204 |
+
if (path_idx, peak_idx) not in removed_peaks:
|
205 |
+
path_retained_peaks.append(path_peaks[peak_idx])
|
206 |
+
else:
|
207 |
+
# What's the larger point?
|
208 |
+
idx = removed_peaks.index((path_idx, peak_idx))
|
209 |
+
larger_path, larger_idx = removed_larger_peaks[idx]
|
210 |
+
path_removed_peaks.append(RemovedPeakData(idx=path_peaks[peak_idx], screening_peak=(larger_path, cell_peaks[larger_path][0][larger_idx])))
|
211 |
+
###
|
212 |
+
|
213 |
+
new_cell_peaks.append(path_retained_peaks)
|
214 |
+
removed_cell_peaks.append(path_removed_peaks)
|
215 |
+
|
216 |
+
cell_peaks = new_cell_peaks
|
217 |
+
pd_list = []
|
218 |
+
|
219 |
+
# Save peak positions, absolute intensity intensities, and length for each SC
|
220 |
+
for k in range(len(all_paths)):
|
221 |
+
|
222 |
+
points, o_intensity = all_paths[k], measured_trace_fluorescence[k]
|
223 |
+
|
224 |
+
peaks = cell_peaks[k]
|
225 |
+
removed_peaks = removed_cell_peaks[k]
|
226 |
+
|
227 |
+
pd = PathData(peaks=peaks, removed_peaks=removed_peaks, points=points, o_intensity=o_intensity, SC_length=path_lengths[k])
|
228 |
+
pd_list.append(pd)
|
229 |
+
|
230 |
+
cd = CellData(pathdata_list=pd_list)
|
231 |
+
|
232 |
+
return cd
|
233 |
+
|
234 |
+
|
235 |
+
alpha_max = 0.4
|
236 |
+
|
237 |
+
|
238 |
+
# Criterion used for identifying peak as a focus - normalized (with mean and s.d.)
|
239 |
+
# intensity levels being above 0.4 time maximum peak level
|
240 |
+
def focus_criterion(pos, v, alpha=alpha_max):
|
241 |
+
"""
|
242 |
+
Identify and return positions where values in the array `v` exceed a certain threshold.
|
243 |
+
|
244 |
+
The threshold is computed as `alpha` times the maximum value in `v`.
|
245 |
+
|
246 |
+
Args:
|
247 |
+
- pos (numpy.ndarray): Array of positions.
|
248 |
+
- v (numpy.ndarray): 1D array of values, e.g., intensities.
|
249 |
+
- alpha (float, optional): A scaling factor for the threshold. Defaults to `alpha_max`.
|
250 |
+
|
251 |
+
Returns:
|
252 |
+
- numpy.ndarray: Array of positions where corresponding values in `v` exceed the threshold.
|
253 |
+
"""
|
254 |
+
if len(v):
|
255 |
+
idx = (v>=alpha*np.max(v))
|
256 |
+
return np.array(pos[idx])
|
257 |
+
else:
|
258 |
+
return np.array([], dtype=np.int32)
|
259 |
+
|
260 |
+
def analyse_celldata(cell_data, config):
|
261 |
+
"""
|
262 |
+
Analyse the provided cell data to extract focus-related information.
|
263 |
+
|
264 |
+
Args:
|
265 |
+
cd (CellData): An instance of the CellData class containing path data information.
|
266 |
+
config (dictionary): Configuration dictionary containing 'peak_threshold' and 'threshold_type'
|
267 |
+
'peak_threshold' (float) - threshold for calling peaks as foci
|
268 |
+
'threshold_type' (str) = 'per-trace', 'per-foci'
|
269 |
+
|
270 |
+
Returns:
|
271 |
+
tuple: A tuple containing:
|
272 |
+
- foci_rel_intensity (list): List of relative intensities for the detected foci.
|
273 |
+
- foci_pos (list): List of absolute positions of the detected foci.
|
274 |
+
- foci_pos_index (list): List of indices of the detected foci.
|
275 |
+
- screened_foci_data (list): List of RemovedPeakData indicating positions of removed peaks and the index of the larger peak
|
276 |
+
- trace_median_intensities (list): Per-trace median intensity
|
277 |
+
- trace_thresholds (list): Per-trace absolute threshold for calling peaks as foci
|
278 |
+
"""
|
279 |
+
foci_abs_intensity = []
|
280 |
+
foci_pos = []
|
281 |
+
foci_pos_index = []
|
282 |
+
screened_foci_data = []
|
283 |
+
trace_median_intensities = []
|
284 |
+
trace_thresholds = []
|
285 |
+
|
286 |
+
peak_threshold = config['peak_threshold']
|
287 |
+
|
288 |
+
threshold_type = config['threshold_type']
|
289 |
+
|
290 |
+
if threshold_type == 'per-trace':
|
291 |
+
"""
|
292 |
+
Call extracted peaks as foci if intensity - trace_mean > peak_threshold * (trace_max_foci_intensity - trace_mean)
|
293 |
+
"""
|
294 |
+
|
295 |
+
for path_data in cell_data.pathdata_list:
|
296 |
+
peaks = np.array(path_data.peaks, dtype=np.int32)
|
297 |
+
|
298 |
+
# Normalize extracted fluorescent intensities by subtracting mean (and dividing
|
299 |
+
# by standard deviation - note that the latter should have no effect on the results).
|
300 |
+
h = np.array(path_data.o_intensity)
|
301 |
+
h = h - np.mean(h)
|
302 |
+
h = h/np.std(h)
|
303 |
+
# Extract foci according to criterion
|
304 |
+
foci_idx = focus_criterion(peaks, h[peaks], peak_threshold)
|
305 |
+
|
306 |
+
#
|
307 |
+
removed_peaks = path_data.removed_peaks
|
308 |
+
removed_peaks_idx = np.array([u.idx for u in removed_peaks], dtype=np.int32)
|
309 |
+
|
310 |
+
|
311 |
+
if len(peaks):
|
312 |
+
trace_thresholds.append((1-peak_threshold)*np.mean(path_data.o_intensity) + peak_threshold*np.max(np.array(path_data.o_intensity)[peaks]))
|
313 |
+
else:
|
314 |
+
trace_thresholds.append(None)
|
315 |
+
|
316 |
+
if len(removed_peaks):
|
317 |
+
if len(peaks):
|
318 |
+
threshold = (1-peak_threshold)*np.mean(path_data.o_intensity) + peak_threshold*np.max(np.array(path_data.o_intensity)[peaks])
|
319 |
+
else:
|
320 |
+
threshold = float('-inf')
|
321 |
+
|
322 |
+
|
323 |
+
removed_peak_heights = np.array(path_data.o_intensity)[removed_peaks_idx]
|
324 |
+
screened_foci_idx = np.where(removed_peak_heights>threshold)[0]
|
325 |
+
|
326 |
+
screened_foci_data.append([removed_peaks[i] for i in screened_foci_idx])
|
327 |
+
else:
|
328 |
+
screened_foci_data.append([])
|
329 |
+
|
330 |
+
pos_abs = (foci_idx/len(path_data.points))*path_data.SC_length
|
331 |
+
foci_pos.append(pos_abs)
|
332 |
+
foci_abs_intensity.append(np.array(path_data.o_intensity)[foci_idx])
|
333 |
+
|
334 |
+
foci_pos_index.append(foci_idx)
|
335 |
+
trace_median_intensities.append(np.median(path_data.o_intensity))
|
336 |
+
|
337 |
+
elif threshold_type == 'per-cell':
|
338 |
+
"""
|
339 |
+
Call extracted peaks as foci if intensity - trace_mean > peak_threshold * max(intensity - trace_mean)
|
340 |
+
"""
|
341 |
+
max_cell_intensity = float("-inf")
|
342 |
+
for path_data in cell_data.pathdata_list:
|
343 |
+
|
344 |
+
# Normalize extracted fluorescent intensities by subtracting mean (and dividing
|
345 |
+
# by standard deviation - note that the latter should have no effect on the results).
|
346 |
+
h = np.array(path_data.o_intensity)
|
347 |
+
h = h - np.mean(h)
|
348 |
+
max_cell_intensity = max(max_cell_intensity, np.max(h))
|
349 |
+
|
350 |
+
for path_data in cell_data.pathdata_list:
|
351 |
+
peaks = np.array(path_data.peaks, dtype=np.int32)
|
352 |
+
|
353 |
+
# Normalize extracted fluorescent intensities by subtracting mean (and dividing
|
354 |
+
# by standard deviation - note that the latter should have no effect on the results).
|
355 |
+
h = np.array(path_data.o_intensity)
|
356 |
+
h = h - np.mean(h)
|
357 |
+
|
358 |
+
foci_idx = peaks[h[peaks]>peak_threshold*max_cell_intensity]
|
359 |
+
|
360 |
+
removed_peaks = path_data.removed_peaks
|
361 |
+
removed_peaks_idx = np.array([u.idx for u in removed_peaks], dtype=np.int32)
|
362 |
+
|
363 |
+
trace_thresholds.append(np.mean(path_data.o_intensity) + peak_threshold*max_cell_intensity)
|
364 |
+
|
365 |
+
if len(removed_peaks):
|
366 |
+
threshold = np.mean(path_data.o_intensity) + peak_threshold*max_cell_intensity
|
367 |
+
|
368 |
+
removed_peak_heights = np.array(path_data.o_intensity)[removed_peaks_idx]
|
369 |
+
screened_foci_idx = np.where(removed_peak_heights>threshold)[0]
|
370 |
+
|
371 |
+
screened_foci_data.append([removed_peaks[i] for i in screened_foci_idx])
|
372 |
+
else:
|
373 |
+
screened_foci_data.append([])
|
374 |
+
|
375 |
+
pos_abs = (foci_idx/len(path_data.points))*path_data.SC_length
|
376 |
+
foci_pos.append(pos_abs)
|
377 |
+
foci_abs_intensity.append(np.array(path_data.o_intensity)[foci_idx])
|
378 |
+
|
379 |
+
foci_pos_index.append(foci_idx)
|
380 |
+
trace_median_intensities.append(np.median(path_data.o_intensity))
|
381 |
+
|
382 |
+
else:
|
383 |
+
raise NotImplementedError
|
384 |
+
|
385 |
+
return foci_abs_intensity, foci_pos, foci_pos_index, screened_foci_data, trace_median_intensities, trace_thresholds
|
386 |
+
|
387 |
+
def analyse_traces(all_paths, path_lengths, measured_trace_fluorescence, config):
|
388 |
+
|
389 |
+
cd = process_cell_traces(all_paths, path_lengths, measured_trace_fluorescence, dmin=config['screening_distance'])
|
390 |
+
|
391 |
+
return analyse_celldata(cd, config)
|
392 |
+
|
393 |
+
|
394 |
+
|
395 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pillow
|
2 |
+
tifffile
|
3 |
+
matplotlib
|
4 |
+
numpy
|
5 |
+
lxml
|
6 |
+
pandas
|
7 |
+
scipy
|
setup.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from setuptools import setup, find_packages
|
2 |
+
|
3 |
+
setup(
|
4 |
+
name='path_analysis',
|
5 |
+
version='0.1.0',
|
6 |
+
description='A brief description of your package',
|
7 |
+
author='Your Name',
|
8 |
+
author_email='[email protected]',
|
9 |
+
url='https://github.com/yourusername/yourrepository', # if you have a repo for the project
|
10 |
+
packages=find_packages(), # or specify manually: ['your_package', 'your_package.submodule', ...]
|
11 |
+
install_requires=[
|
12 |
+
'numpy', # for example, if your package needs numpy
|
13 |
+
'gradio',
|
14 |
+
# ... other dependencies
|
15 |
+
],
|
16 |
+
classifiers=[
|
17 |
+
'Development Status :: 3 - Alpha',
|
18 |
+
'Intended Audience :: Developers',
|
19 |
+
'Programming Language :: Python :: 3',
|
20 |
+
'Programming Language :: Python :: 3.6',
|
21 |
+
'Programming Language :: Python :: 3.7',
|
22 |
+
'Programming Language :: Python :: 3.8',
|
23 |
+
'Programming Language :: Python :: 3.9',
|
24 |
+
# ... other classifiers
|
25 |
+
],
|
26 |
+
python_requires='>=3.6', # your project's Python version requirement
|
27 |
+
keywords='some keywords related to your project',
|
28 |
+
# ... other parameters
|
29 |
+
)
|
tests/__init__.py
ADDED
File without changes
|
tests/test_analyse.py
ADDED
@@ -0,0 +1,370 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import pytest
|
3 |
+
from path_analysis.analyse import *
|
4 |
+
from path_analysis.data_preprocess import RemovedPeakData
|
5 |
+
import numpy as np
|
6 |
+
from math import pi
|
7 |
+
import xml.etree.ElementTree as ET
|
8 |
+
from PIL import ImageChops
|
9 |
+
|
10 |
+
def test_draw_paths_no_error():
|
11 |
+
all_paths = [[[0, 0], [1, 1]], [[2, 2], [3, 3]]]
|
12 |
+
foci_stack = np.zeros((5, 5, 5))
|
13 |
+
foci_stack[0,0,0] = 1.0
|
14 |
+
foci_index = [[0], [1]]
|
15 |
+
r = 3
|
16 |
+
|
17 |
+
try:
|
18 |
+
im = draw_paths(all_paths, foci_stack, foci_index, r)
|
19 |
+
except Exception as e:
|
20 |
+
pytest.fail(f"draw_paths raised an exception: {e}")
|
21 |
+
|
22 |
+
def test_draw_paths_image_size():
|
23 |
+
all_paths = [[[0, 0], [1, 1]], [[2, 2], [3, 3]]]
|
24 |
+
foci_stack = np.zeros((5, 5, 5))
|
25 |
+
foci_stack[0,0,0] = 1.0
|
26 |
+
|
27 |
+
foci_index = [[0], [1]]
|
28 |
+
r = 3
|
29 |
+
|
30 |
+
im = draw_paths(all_paths, foci_stack, foci_index, r)
|
31 |
+
assert im.size == (5, 5), f"Expected image size (5, 5), got {im.size}"
|
32 |
+
|
33 |
+
def test_draw_paths_image_modified():
|
34 |
+
all_paths = [[[0, 0], [1, 1]], [[2, 2], [3, 3]]]
|
35 |
+
foci_stack = np.zeros((5, 5, 5))
|
36 |
+
foci_stack[0,0,0] = 1.0
|
37 |
+
foci_index = [[0], [1]]
|
38 |
+
r = 3
|
39 |
+
|
40 |
+
im = draw_paths(all_paths, foci_stack, foci_index, r)
|
41 |
+
blank_image = Image.new("RGB", (5, 5), "black")
|
42 |
+
|
43 |
+
# Check if the image is not entirely black (i.e., has been modified)
|
44 |
+
diff = ImageChops.difference(im, blank_image)
|
45 |
+
assert diff.getbbox() is not None, "The image has not been modified"
|
46 |
+
|
47 |
+
|
48 |
+
|
49 |
+
def test_calculate_path_length_partials_default_voxel():
|
50 |
+
point_list = [(0, 0, 0), (1, 0, 0), (1, 1, 1)]
|
51 |
+
expected_result = np.array([0.0, 1.0, 1.0+np.sqrt(2)])
|
52 |
+
result = calculate_path_length_partials(point_list)
|
53 |
+
np.testing.assert_allclose(result, expected_result, atol=1e-5)
|
54 |
+
|
55 |
+
def test_calculate_path_length_partials_custom_voxel():
|
56 |
+
point_list = [(0, 0, 0), (1, 0, 0), (1, 1, 0)]
|
57 |
+
voxel_size = (1, 2, 1)
|
58 |
+
expected_result = np.array([0.0, 1.0, 3.0])
|
59 |
+
result = calculate_path_length_partials(point_list, voxel_size=voxel_size)
|
60 |
+
np.testing.assert_allclose(result, expected_result, atol=1e-5)
|
61 |
+
|
62 |
+
def test_calculate_path_length_partials_single_point():
|
63 |
+
point_list = [(0, 0, 0)]
|
64 |
+
expected_result = np.array([0.0])
|
65 |
+
result = calculate_path_length_partials(point_list)
|
66 |
+
np.testing.assert_allclose(result, expected_result, atol=1e-5)
|
67 |
+
|
68 |
+
def test_get_paths_from_traces_file():
|
69 |
+
# Mock the XML traces file content
|
70 |
+
xml_content = '''<?xml version="1.0"?>
|
71 |
+
<root>
|
72 |
+
<path reallength="5.0">
|
73 |
+
<point x="1" y="2" z="3"/>
|
74 |
+
<point x="4" y="5" z="6"/>
|
75 |
+
</path>
|
76 |
+
<path reallength="10.0">
|
77 |
+
<point x="7" y="8" z="9"/>
|
78 |
+
<point x="10" y="11" z="12"/>
|
79 |
+
</path>
|
80 |
+
</root>
|
81 |
+
'''
|
82 |
+
|
83 |
+
# Create a temporary XML file
|
84 |
+
with open("temp_traces.xml", "w") as f:
|
85 |
+
f.write(xml_content)
|
86 |
+
|
87 |
+
all_paths, path_lengths = get_paths_from_traces_file("temp_traces.xml")
|
88 |
+
|
89 |
+
expected_paths = [[(1, 2, 3), (4, 5, 6)], [(7, 8, 9), (10, 11, 12)]]
|
90 |
+
expected_lengths = [5.0, 10.0]
|
91 |
+
|
92 |
+
assert all_paths == expected_paths, f"Expected paths {expected_paths}, but got {all_paths}"
|
93 |
+
assert path_lengths == expected_lengths, f"Expected lengths {expected_lengths}, but got {path_lengths}"
|
94 |
+
|
95 |
+
# Clean up temporary file
|
96 |
+
import os
|
97 |
+
os.remove("temp_traces.xml")
|
98 |
+
|
99 |
+
|
100 |
+
def test_measure_chrom2():
|
101 |
+
# Mock data
|
102 |
+
path = [(2, 3, 4), (4, 5, 6), (9, 9, 9)] # Sample ordered path points
|
103 |
+
intensity = np.random.rand(10, 10, 10) # Random 3D fluorescence data
|
104 |
+
config = {
|
105 |
+
'z_res': 1,
|
106 |
+
'xy_res': 0.5,
|
107 |
+
'sphere_radius': 2.5
|
108 |
+
}
|
109 |
+
|
110 |
+
# Function call
|
111 |
+
_, measurements, measurements_max = measure_chrom2(path, intensity, config)
|
112 |
+
|
113 |
+
# Assertions
|
114 |
+
assert len(measurements) == len(path), "Measurements length should match path length"
|
115 |
+
assert len(measurements_max) == len(path), "Max measurements length should match path length"
|
116 |
+
assert all(0 <= val <= 1 for val in measurements), "All mean measurements should be between 0 and 1 for this mock data"
|
117 |
+
assert all(0 <= val <= 1 for val in measurements_max), "All max measurements should be between 0 and 1 for this mock data"
|
118 |
+
|
119 |
+
def test_measure_chrom2_z():
|
120 |
+
# Mock data
|
121 |
+
path = [(2, 3, 4), (4, 5, 6)] # Sample ordered path points
|
122 |
+
_,_,intensity = np.meshgrid(np.arange(10), np.arange(10), np.arange(10)) # 3D fluorescence data - z dependent
|
123 |
+
config = {
|
124 |
+
'z_res': 1,
|
125 |
+
'xy_res': 0.5,
|
126 |
+
'sphere_radius': 2.5
|
127 |
+
}
|
128 |
+
|
129 |
+
# Function call
|
130 |
+
_, measurements, measurements_max = measure_chrom2(path, intensity, config)
|
131 |
+
|
132 |
+
# Assertions
|
133 |
+
assert len(measurements) == len(path), "Measurements length should match path length"
|
134 |
+
assert len(measurements_max) == len(path), "Max measurements length should match path length"
|
135 |
+
assert all(measurements == np.array([4,6]))
|
136 |
+
assert all(measurements_max == np.array([6,8]))
|
137 |
+
|
138 |
+
def test_measure_chrom2_z2():
|
139 |
+
# Mock data
|
140 |
+
path = [(0,0,0), (2, 3, 4), (4, 5, 6)] # Sample ordered path points
|
141 |
+
_,_,intensity = np.meshgrid(np.arange(10), np.arange(10), np.arange(10)) # 3D fluorescence data - z dependent
|
142 |
+
config = {
|
143 |
+
'z_res': 0.25,
|
144 |
+
'xy_res': 0.5,
|
145 |
+
'sphere_radius': 2.5
|
146 |
+
}
|
147 |
+
|
148 |
+
# Function call
|
149 |
+
_, measurements, measurements_max = measure_chrom2(path, intensity, config)
|
150 |
+
|
151 |
+
# Assertions
|
152 |
+
assert len(measurements) == len(path), "Measurements length should match path length"
|
153 |
+
assert len(measurements_max) == len(path), "Max measurements length should match path length"
|
154 |
+
assert all(measurements_max == np.array([9,9,9]))
|
155 |
+
|
156 |
+
|
157 |
+
def test_measure_from_mask():
|
158 |
+
mask = np.array([
|
159 |
+
[0, 1, 0],
|
160 |
+
[1, 1, 1],
|
161 |
+
[0, 1, 0]
|
162 |
+
])
|
163 |
+
measure_stack = np.array([
|
164 |
+
[2, 4, 2],
|
165 |
+
[4, 8, 4],
|
166 |
+
[2, 4, 2]
|
167 |
+
])
|
168 |
+
result = measure_from_mask(mask, measure_stack)
|
169 |
+
assert result == 24 # Expected sum: 4+4+8+4+4
|
170 |
+
|
171 |
+
def test_max_from_mask():
|
172 |
+
mask = np.array([
|
173 |
+
[0, 1, 0],
|
174 |
+
[1, 1, 1],
|
175 |
+
[0, 1, 0]
|
176 |
+
])
|
177 |
+
measure_stack = np.array([
|
178 |
+
[2, 5, 2],
|
179 |
+
[4, 8, 3],
|
180 |
+
[2, 7, 2]
|
181 |
+
])
|
182 |
+
result = max_from_mask(mask, measure_stack)
|
183 |
+
assert result == 8 # Expected max: 8
|
184 |
+
|
185 |
+
|
186 |
+
def test_measure_at_point_mean():
|
187 |
+
measure_stack = np.array([
|
188 |
+
[[2, 2, 2, 0], [4, 4, 6, 0], [3, 3, 2, 0], [0, 0, 0, 0]],
|
189 |
+
[[4, 4, 4, 0], [8, 8, 8, 0], [4, 4, 4, 0], [0, 0, 0, 0]],
|
190 |
+
[[3, 3, 3, 0], [6, 6, 4, 0], [3, 2, 2, 0], [0, 0, 0, 0]],
|
191 |
+
[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]],
|
192 |
+
])
|
193 |
+
p = (1, 1, 1)
|
194 |
+
melem = np.ones((3, 3, 3))
|
195 |
+
result = measure_at_point(p, melem, measure_stack, op='mean')
|
196 |
+
assert result == 4, "Expected mean: 4"
|
197 |
+
|
198 |
+
def test_measure_at_point_mean_off1():
|
199 |
+
measure_stack = np.array([
|
200 |
+
[[2, 2, 2, 0], [4, 4, 6, 0], [5, 5, 2, 0], [0, 0, 0, 0]],
|
201 |
+
[[4, 4, 4, 0], [8, 8, 8, 0], [4, 4, 4, 0], [0, 0, 0, 0]],
|
202 |
+
[[3, 3, 3, 0], [6, 6, 4, 0], [3, 2, 2, 0], [0, 0, 0, 0]],
|
203 |
+
[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]],
|
204 |
+
])
|
205 |
+
p = (0, 0, 0)
|
206 |
+
melem = np.ones((3, 3, 3))
|
207 |
+
result = measure_at_point(p, melem, measure_stack, op='mean')
|
208 |
+
assert result == 4.5, "Expected mean: 4.5"
|
209 |
+
|
210 |
+
def test_measure_at_point_mean_off2():
|
211 |
+
measure_stack = np.array([
|
212 |
+
[[2, 2, 2, 0], [4, 4, 6, 0], [5, 5, 2, 0], [0, 0, 0, 0]],
|
213 |
+
[[4, 4, 4, 0], [8, 8, 8, 0], [4, 4, 4, 0], [0, 0, 0, 0]],
|
214 |
+
[[3, 3, 3, 0], [6, 6, 4, 0], [3, 2, 2, 0], [0, 0, 0, 0]],
|
215 |
+
[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]],
|
216 |
+
])
|
217 |
+
p = (3, 1, 1)
|
218 |
+
melem = np.ones((3, 3, 3))
|
219 |
+
print(measure_stack[p[0], p[1], p[2]])
|
220 |
+
|
221 |
+
result = measure_at_point(p, melem, measure_stack, op='mean')
|
222 |
+
assert result == 32/18 # Expected mean: 4.5
|
223 |
+
|
224 |
+
def test_measure_at_point_mean_off3():
|
225 |
+
measure_stack = np.array([
|
226 |
+
[[2, 2, 2, 0], [4, 4, 6, 0], [5, 5, 2, 0], [0, 0, 0, 0]],
|
227 |
+
[[4, 4, 4, 0], [8, 8, 8, 0], [4, 4, 4, 0], [0, 0, 0, 0]],
|
228 |
+
[[3, 3, 3, 0], [6, 6, 4, 0], [3, 2, 2, 0], [0, 0, 0, 0]],
|
229 |
+
[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]],
|
230 |
+
])
|
231 |
+
p = (3, 1, 1)
|
232 |
+
melem = np.ones((1, 1, 3))
|
233 |
+
print(measure_stack[p[0], p[1], p[2]])
|
234 |
+
|
235 |
+
result = measure_at_point(p, melem, measure_stack, op='mean')
|
236 |
+
assert result == 0, "Expected mean: 4.5"
|
237 |
+
|
238 |
+
def test_measure_at_point_mean_off3():
|
239 |
+
measure_stack = np.array([
|
240 |
+
[[2, 2, 2, 0], [4, 4, 6, 0], [5, 5, 2, 0], [0, 0, 0, 0]],
|
241 |
+
[[4, 4, 4, 0], [8, 8, 8, 0], [4, 4, 4, 0], [0, 0, 0, 0]],
|
242 |
+
[[3, 3, 3, 0], [6, 6, 4, 0], [3, 2, 2, 0], [0, 0, 0, 0]],
|
243 |
+
[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]],
|
244 |
+
])
|
245 |
+
p = (3, 1, 1)
|
246 |
+
melem = np.ones((3, 1, 1))
|
247 |
+
print(measure_stack[p[0], p[1], p[2]])
|
248 |
+
|
249 |
+
result = measure_at_point(p, melem, measure_stack, op='mean')
|
250 |
+
assert result == 3, "Expected mean: 4.5"
|
251 |
+
|
252 |
+
|
253 |
+
def test_measure_at_point_max():
|
254 |
+
measure_stack = np.array([
|
255 |
+
[[2, 2, 2], [4, 4, 4], [2, 2, 2]],
|
256 |
+
[[4, 5, 4], [8, 7, 9], [4, 4, 4]],
|
257 |
+
[[2, 2, 2], [4, 4, 4], [2, 2, 2]]
|
258 |
+
])
|
259 |
+
p = (1, 1, 1)
|
260 |
+
melem = np.ones((3, 3, 3))
|
261 |
+
result = measure_at_point(p, melem, measure_stack, op='max')
|
262 |
+
assert result == 9, "Expected max: 9"
|
263 |
+
|
264 |
+
|
265 |
+
def test_make_sphere_equal():
|
266 |
+
R = 5
|
267 |
+
z_scale_ratio = 1.0
|
268 |
+
|
269 |
+
sphere = make_sphere(R, z_scale_ratio)
|
270 |
+
|
271 |
+
# Check the returned type
|
272 |
+
assert isinstance(sphere, np.ndarray), "Output should be a numpy ndarray"
|
273 |
+
|
274 |
+
# Check the shape
|
275 |
+
expected_shape = (2*R+1, 2*R+1, 2*R+1)
|
276 |
+
assert sphere.shape == expected_shape, f"Expected shape {expected_shape}, but got {sphere.shape}"
|
277 |
+
|
278 |
+
assert (sphere[:,:,::-1] == sphere).all(), f"Expected symmetrical mask"
|
279 |
+
assert (sphere[:,::-1,:] == sphere).all(), f"Expected symmetrical mask"
|
280 |
+
assert (sphere[::-1,:,:] == sphere).all(), f"Expected symmetrical mask"
|
281 |
+
assert abs(np.sum(sphere)-4/3*pi*R**3)<10, f"Expected approximate volume to be correct"
|
282 |
+
assert (sphere[R,R,0] == 1), f"Expected centre point on top plane to be within sphere"
|
283 |
+
assert (sphere[R+1,R,0] == 0), f"Expected point next to centre on top plane to be outside sphere"
|
284 |
+
|
285 |
+
import pandas as pd
|
286 |
+
|
287 |
+
def test_extract_peaks_basic():
|
288 |
+
cell_id = 1 # Simple per-cell tag
|
289 |
+
all_paths = [[[0, 0, 0], [1, 1, 0]]] # Single, simple path
|
290 |
+
path_lengths = [1.41] # length of the above path
|
291 |
+
measured_traces = [[100, 200]] # fluorescence along the path
|
292 |
+
config = {'peak_threshold': 0.4, 'sphere_radius': 2, 'xy_res': 1, 'z_res': 1, 'threshold_type':'per-cell', 'use_corrected_positions': True, 'screening_distance':10 }
|
293 |
+
|
294 |
+
df, foci_absolute_intensity, foci_pos_index, screened_foci_data, trace_thresholds, trace_positions = extract_peaks(cell_id, all_paths, path_lengths, measured_traces, config)
|
295 |
+
|
296 |
+
assert len(df) == 1, "Expected one row in DataFrame"
|
297 |
+
assert df['Cell_ID'].iloc[0] == cell_id, "Unexpected cell_id"
|
298 |
+
assert list(df['Trace_foci_number']) == [1], "Wrong foci number"
|
299 |
+
assert df['Foci_1_position(um)'].iloc[0] == np.sqrt(2)
|
300 |
+
assert foci_pos_index == [[1]]
|
301 |
+
assert foci_absolute_intensity == [[200]]
|
302 |
+
assert screened_foci_data == [[]]
|
303 |
+
assert trace_thresholds == [ [ 150+0.4*50] ]
|
304 |
+
assert np.all(trace_positions[0] == np.array([0, np.sqrt(2)]))
|
305 |
+
|
306 |
+
def test_extract_peaks_multiple_paths():
|
307 |
+
cell_id = 1
|
308 |
+
all_paths = [[[0, 0, 0], [1, 1, 0]], [[1, 1, 200], [2, 2, 200]]]
|
309 |
+
path_lengths = [1.41, 1.41]
|
310 |
+
measured_traces = [[100, 200], [100, 140]]
|
311 |
+
config = {'peak_threshold': 0.4, 'sphere_radius': 2, 'xy_res': 1, 'z_res': 1, 'threshold_type':'per-trace', 'use_corrected_positions': True, 'screening_distance':10 }
|
312 |
+
|
313 |
+
df, foci_absolute_intensity, foci_pos_index, screened_foci_data, trace_thresholds, trace_positions = extract_peaks(cell_id, all_paths, path_lengths, measured_traces, config)
|
314 |
+
|
315 |
+
|
316 |
+
|
317 |
+
assert len(df) == 2, "Expected two rows in DataFrame"
|
318 |
+
assert df['Cell_ID'].iloc[0] == cell_id, "Unexpected cell_id"
|
319 |
+
assert list(df['Trace_foci_number']) == [1,1], "Wrong foci number"
|
320 |
+
assert df['Foci_1_position(um)'].iloc[0] == np.sqrt(2)
|
321 |
+
print(foci_pos_index)
|
322 |
+
assert list(map(list, foci_pos_index)) == [[1],[1]]
|
323 |
+
assert list(map(list, foci_absolute_intensity)) == [[200],[140]]
|
324 |
+
assert trace_thresholds == [ 150+0.4*50, 120+0.4*20 ]
|
325 |
+
assert np.all(trace_positions[0] == np.array([0, np.sqrt(2)]))
|
326 |
+
assert screened_foci_data == [[],[]]
|
327 |
+
|
328 |
+
def test_extract_peaks_multiple_paths_screened():
|
329 |
+
cell_id = 1
|
330 |
+
all_paths = [[[0, 0, 0], [1, 1, 0]], [[1, 1, 2], [2, 2, 2]]]
|
331 |
+
path_lengths = [1.41, 1.41]
|
332 |
+
measured_traces = [[100, 200], [100, 150]]
|
333 |
+
config = {'peak_threshold': 0.4, 'sphere_radius': 2, 'xy_res': 1, 'z_res': 1, 'threshold_type':'per-trace', 'use_corrected_positions': True, 'screening_distance':10 }
|
334 |
+
|
335 |
+
df, foci_absolute_intensity, foci_pos_index, screened_foci_data, trace_thresholds, trace_positions = extract_peaks(cell_id, all_paths, path_lengths, measured_traces, config)
|
336 |
+
|
337 |
+
|
338 |
+
|
339 |
+
assert len(df) == 2, "Expected two rows in DataFrame"
|
340 |
+
assert df['Cell_ID'].iloc[0] == cell_id, "Unexpected cell_id"
|
341 |
+
assert list(df['Trace_foci_number']) == [1,0], "Wrong foci number"
|
342 |
+
assert df['Foci_1_position(um)'].iloc[0] == np.sqrt(2)
|
343 |
+
print(foci_pos_index)
|
344 |
+
assert list(map(list, foci_pos_index)) == [[1],[]]
|
345 |
+
assert list(map(list, foci_absolute_intensity)) == [[200],[]]
|
346 |
+
assert trace_thresholds == [ 150+0.4*50, None ]
|
347 |
+
assert np.all(trace_positions[0] == np.array([0, np.sqrt(2)]))
|
348 |
+
assert screened_foci_data == [[],[RemovedPeakData(idx=1, screening_peak=(0,1))]]
|
349 |
+
|
350 |
+
|
351 |
+
def test_extract_peaks_multiple_paths_per_cell():
|
352 |
+
cell_id = 1
|
353 |
+
all_paths = [[[0, 0, 0], [1, 1, 0]], [[1, 1, 200], [2, 2, 200]]]
|
354 |
+
path_lengths = [1.41, 1.41]
|
355 |
+
measured_traces = [[100, 200], [100, 140]]
|
356 |
+
config = {'peak_threshold': 0.4, 'sphere_radius': 2, 'xy_res': 1, 'z_res': 1, 'threshold_type':'per-cell', 'use_corrected_positions': True, 'screening_distance':10 }
|
357 |
+
|
358 |
+
df, foci_absolute_intensity, foci_pos_index, screened_foci_data, trace_thresholds, trace_positions = extract_peaks(cell_id, all_paths, path_lengths, measured_traces, config)
|
359 |
+
|
360 |
+
|
361 |
+
|
362 |
+
assert len(df) == 2, "Expected two rows in DataFrame"
|
363 |
+
assert df['Cell_ID'].iloc[0] == cell_id, "Unexpected cell_id"
|
364 |
+
assert list(df['Trace_foci_number']) == [1,0], "Wrong foci number"
|
365 |
+
assert df['Foci_1_position(um)'].iloc[0] == np.sqrt(2)
|
366 |
+
assert list(map(list, foci_pos_index)) == [[1],[]]
|
367 |
+
assert list(map(list, foci_absolute_intensity)) == [[200],[]]
|
368 |
+
assert trace_thresholds == [ 150+0.4*50, 120+0.4*50 ]
|
369 |
+
assert np.all(trace_positions[0] == np.array([0, np.sqrt(2)]))
|
370 |
+
assert screened_foci_data == [[],[]]
|
tests/test_preprocess.py
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from path_analysis.data_preprocess import *
|
2 |
+
import numpy as np
|
3 |
+
import pytest
|
4 |
+
|
5 |
+
|
6 |
+
def test_thin_points():
|
7 |
+
# Define a sample point list
|
8 |
+
points = [
|
9 |
+
PeakData([0, 0, 0], 10, 0),
|
10 |
+
PeakData([1, 1, 1], 8, 1),
|
11 |
+
PeakData([10, 10, 10], 12, 2),
|
12 |
+
PeakData([10.5, 10.5, 10.5], 5, 3),
|
13 |
+
PeakData([20, 20, 20], 15, 4)
|
14 |
+
]
|
15 |
+
|
16 |
+
# Call the thin_points function with dmin=5 (for example)
|
17 |
+
removed_indices = thin_peaks(points, dmin=5)
|
18 |
+
|
19 |
+
# Check results
|
20 |
+
# Point at index 1 ([1, 1, 1]) should be removed since it's within 5 units distance of point at index 0 and has lower intensity.
|
21 |
+
# Similarly, point at index 3 ([10.5, 10.5, 10.5]) should be removed as it's close to point at index 2 and has lower intensity.
|
22 |
+
assert set(removed_indices) == {1, 3}
|
23 |
+
|
24 |
+
# Another simple test to check if function does nothing when points are far apart
|
25 |
+
far_points = [
|
26 |
+
PeakData([0, 0, 0], 10, 0),
|
27 |
+
PeakData([100, 100, 100], 12, 1),
|
28 |
+
PeakData([200, 200, 200], 15, 2)
|
29 |
+
]
|
30 |
+
|
31 |
+
removed_indices_far = thin_peaks(far_points, dmin=5)
|
32 |
+
assert len(removed_indices_far) == 0 # Expect no points to be removed
|
33 |
+
|
34 |
+
|
35 |
+
def test_find_peaks2():
|
36 |
+
|
37 |
+
# Basic test
|
38 |
+
data = np.array([0, 0, 0, 0, 0, 0, 5, 0, 3, 0])
|
39 |
+
peaks, _ = find_peaks2(data)
|
40 |
+
assert set(peaks) == {6} # Expected peaks at positions 6
|
41 |
+
|
42 |
+
# Basic test
|
43 |
+
data = np.array([0, 2, 0, 0, 0, 0, 0, 0, 0, 0])
|
44 |
+
peaks, _ = find_peaks2(data)
|
45 |
+
assert set(peaks) == {1} # Expected peaks at positions 1
|
46 |
+
|
47 |
+
|
48 |
+
# Test with padding impacting peak detection
|
49 |
+
data = np.array([3, 2.9, 0, 0, 0, 3])
|
50 |
+
peaks, _ = find_peaks2(data)
|
51 |
+
assert set(peaks) == {0,5} # Peaks at both ends
|
52 |
+
|
53 |
+
# Test with close peaks
|
54 |
+
data = np.array([3, 0, 3])
|
55 |
+
peaks, _ = find_peaks2(data)
|
56 |
+
assert set(peaks) == {2} # Peak at right end only
|
57 |
+
# Test with close peaks
|
58 |
+
|
59 |
+
|
60 |
+
# Test with close peaks
|
61 |
+
data = np.array([3, 0, 3])
|
62 |
+
peaks, _ = find_peaks2(data, distance=1)
|
63 |
+
assert set(peaks) == {0,2} # Peaks at both ends
|
64 |
+
|
65 |
+
# Test with close peaks
|
66 |
+
data = np.array([0, 3, 3, 3, 0, 3, 3, 3, 3, 3, 3])
|
67 |
+
peaks, _ = find_peaks2(data, distance=1)
|
68 |
+
assert set(peaks) == {2,7} # Peak at centre (rounded to the left) of groups of maximum values
|
69 |
+
|
70 |
+
# Test with prominence threshold
|
71 |
+
data = np.array([0, 1, 0, 0.4, 0])
|
72 |
+
peaks, _ = find_peaks2(data, prominence=0.5)
|
73 |
+
assert peaks == [1] # Only the peak at position 1 meets the prominence threshold
|
74 |
+
|
75 |
+
|
76 |
+
def test_focus_criterion():
|
77 |
+
pos = np.array([0, 1, 2, 3, 4, 6])
|
78 |
+
values = np.array([0.1, 0.5, 0.2, 0.8, 0.3, 0.9])
|
79 |
+
|
80 |
+
# Basic test
|
81 |
+
assert np.array_equal(focus_criterion(pos, values), np.array([1, 3, 6])) # only values 0.8 and 0.9 exceed 0.4 times the max (which is 0.9)
|
82 |
+
|
83 |
+
# Empty test
|
84 |
+
assert np.array_equal(focus_criterion(np.array([]), np.array([])), np.array([]))
|
85 |
+
|
86 |
+
# Test with custom alpha
|
87 |
+
assert np.array_equal(focus_criterion(pos, values, alpha=0.5), np.array([1, 3, 6]))
|
88 |
+
|
89 |
+
# Test with a larger alpha
|
90 |
+
assert np.array_equal(focus_criterion(pos, values, alpha=1.0), [6]) # No values exceed the maximum value itself
|
91 |
+
|
92 |
+
# Test with all values below threshold
|
93 |
+
values = np.array([0.1, 0.2, 0.3, 0.4])
|
94 |
+
|
95 |
+
assert np.array_equal(focus_criterion(pos[:4], values), [1,2,3]) # All values are below 0.4 times the max (which is 0.4)
|
96 |
+
|
97 |
+
@pytest.fixture
|
98 |
+
def mock_data():
|
99 |
+
all_paths = [ [ (0,0,0), (0,2,0), (0,5,0), (0,10,0), (0,15,0), (0,20,0)], [ (1,20,0), (1,20,10), (1,20,20) ] ] # Mock paths
|
100 |
+
path_lengths = [ 2.2, 2.3 ] # Mock path lengths
|
101 |
+
measured_trace_fluorescence = [ [100, 8, 3, 2, 3, 49], [38, 2, 20] ] # Mock fluorescence data
|
102 |
+
return all_paths, path_lengths, measured_trace_fluorescence
|
103 |
+
|
104 |
+
def test_process_cell_traces_return_type(mock_data):
|
105 |
+
all_paths, path_lengths, measured_trace_fluorescence = mock_data
|
106 |
+
result = process_cell_traces(all_paths, path_lengths, measured_trace_fluorescence)
|
107 |
+
assert isinstance(result, CellData), f"Expected CellData but got {type(result)}"
|
108 |
+
|
109 |
+
def test_process_cell_traces_pathdata_list_length(mock_data):
|
110 |
+
all_paths, path_lengths, measured_trace_fluorescence = mock_data
|
111 |
+
result = process_cell_traces(all_paths, path_lengths, measured_trace_fluorescence)
|
112 |
+
assert len(result.pathdata_list) == len(all_paths), f"Expected {len(all_paths)} but got {len(result.pathdata_list)}"
|
113 |
+
|
114 |
+
def test_process_cell_traces_pathdata_path_lengths(mock_data):
|
115 |
+
all_paths, path_lengths, measured_trace_fluorescence = mock_data
|
116 |
+
result = process_cell_traces(all_paths, path_lengths, measured_trace_fluorescence)
|
117 |
+
path_lengths = [p.SC_length for p in result.pathdata_list]
|
118 |
+
expected_path_lengths = [2.2, 2.3]
|
119 |
+
assert path_lengths == expected_path_lengths, f"Expected {expected_path_lengths} but got {path_lengths}"
|
120 |
+
|
121 |
+
def test_process_cell_traces_peaks(mock_data):
|
122 |
+
all_paths, path_lengths, measured_trace_fluorescence = mock_data
|
123 |
+
result = process_cell_traces(all_paths, path_lengths, measured_trace_fluorescence)
|
124 |
+
print(result)
|
125 |
+
peaks = [p.peaks for p in result.pathdata_list]
|
126 |
+
assert peaks == [[0,5],[]]
|
127 |
+
|
128 |
+
# Mock data
|
129 |
+
@pytest.fixture
|
130 |
+
def mock_celldata():
|
131 |
+
pathdata1 = PathData(peaks=[0, 5], points=[(0,0,0), (0,2,0), (0,5,0), (0,10,0), (0,15,0), (0,20,0)], removed_peaks=[], o_intensity=[100, 8, 3, 2, 3, 69], SC_length=2.2)
|
132 |
+
pathdata2 = PathData(peaks=[2], points=[(1,20,0), (1,20,10), (1,20,20) ], removed_peaks=[RemovedPeakData(0, (0,5))], o_intensity=[38, 2, 20], SC_length=2.3)
|
133 |
+
return CellData(pathdata_list=[pathdata1, pathdata2])
|
134 |
+
|
135 |
+
def test_analyse_celldata(mock_celldata):
|
136 |
+
data_frame, foci_absolute_intensity, foci_position_index, dominated_foci_data, trace_median_intensity, trace_thresholds = analyse_celldata(mock_celldata, {'peak_threshold': 0.4, 'threshold_type':'per-trace'})
|
137 |
+
assert len(data_frame) == len(mock_celldata.pathdata_list), "Mismatch in dataframe length"
|
138 |
+
assert len(foci_absolute_intensity) == len(mock_celldata.pathdata_list), "Mismatch in relative intensities length"
|
139 |
+
assert len(foci_position_index) == len(mock_celldata.pathdata_list), "Mismatch in positions length"
|
140 |
+
|
141 |
+
assert list(map(list, foci_position_index)) == [[0, 5], [2]]
|
142 |
+
|
143 |
+
|
144 |
+
def test_analyse_celldata_per_cell(mock_celldata):
|
145 |
+
data_frame, foci_absolute_intensity, foci_position_index, dominated_foci_data, trace_median_intensity, trace_thresholds = analyse_celldata(mock_celldata, {'peak_threshold': 0.4, 'threshold_type':'per-cell'})
|
146 |
+
assert len(data_frame) == len(mock_celldata.pathdata_list), "Mismatch in relative intensities length"
|
147 |
+
assert len(foci_absolute_intensity) == len(mock_celldata.pathdata_list), "Mismatch in positions length"
|
148 |
+
assert len(foci_position_index) == len(mock_celldata.pathdata_list), "Mismatch in position indices length"
|
149 |
+
assert list(map(list, foci_position_index)) == [[0, 5], []]
|
150 |
+
|
tests/test_results.py
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import pytest
|
3 |
+
from path_analysis.analyse import *
|
4 |
+
from path_analysis.data_preprocess import RemovedPeakData
|
5 |
+
import numpy as np
|
6 |
+
from math import pi
|
7 |
+
import xml.etree.ElementTree as ET
|
8 |
+
from PIL import ImageChops
|
9 |
+
|
10 |
+
from pathlib import Path
|
11 |
+
|
12 |
+
import matplotlib
|
13 |
+
matplotlib.use('Agg')
|
14 |
+
|
15 |
+
@pytest.fixture(scope="module")
|
16 |
+
def script_loc(request):
|
17 |
+
'''Return the directory of the currently running test script'''
|
18 |
+
|
19 |
+
return Path(request.fspath).parent
|
20 |
+
|
21 |
+
def test_image_1(script_loc):
|
22 |
+
|
23 |
+
config = { 'sphere_radius': 0.1984125,
|
24 |
+
'peak_threshold': 0.4,
|
25 |
+
'xy_res': 0.0396825,
|
26 |
+
'z_res': 0.0909184,
|
27 |
+
'threshold_type': 'per-cell',
|
28 |
+
'use_corrected_positions': True,
|
29 |
+
'screening_distance': 10,
|
30 |
+
}
|
31 |
+
|
32 |
+
data_loc = script_loc.parent.parent / 'test_data' / 'hei10 ++ 15.11.19 p22s2 image 9'
|
33 |
+
|
34 |
+
|
35 |
+
image_input = data_loc / 'HEI10.tif'
|
36 |
+
path_input = data_loc / 'SNT_Data.traces'
|
37 |
+
|
38 |
+
paths, traces, fig, extracted_peaks = analyse_paths('Cell', image_input, path_input, config)
|
39 |
+
|
40 |
+
assert np.allclose(extracted_peaks['SNT_trace_length(um)'], [61.47, 70.40, 51.93, 43.94, 62.24], atol=1e-2 )
|
41 |
+
assert np.allclose(extracted_peaks['SNT_trace_length(um)'], extracted_peaks['Measured_trace_length(um)'], atol=1e-8 )
|
42 |
+
assert list(extracted_peaks['Trace_foci_number']) == [2,3,2,2,3]
|
43 |
+
|
44 |
+
def test_image_2(script_loc):
|
45 |
+
|
46 |
+
config = { 'sphere_radius': 0.1984125,
|
47 |
+
'peak_threshold': 0.4,
|
48 |
+
'xy_res': 0.0396825,
|
49 |
+
'z_res': 0.0909184,
|
50 |
+
'threshold_type': 'per-cell',
|
51 |
+
'use_corrected_positions': True,
|
52 |
+
'screening_distance': 10,
|
53 |
+
}
|
54 |
+
|
55 |
+
data_loc = script_loc.parent.parent / 'test_data' / 'z-optimised'
|
56 |
+
|
57 |
+
|
58 |
+
image_input = data_loc / 'HEI10.tif'
|
59 |
+
path_input = data_loc / 'ZYP1.traces'
|
60 |
+
|
61 |
+
paths, traces, fig, extracted_peaks = analyse_paths('Cell', image_input, path_input, config)
|
62 |
+
|
63 |
+
assert np.allclose(extracted_peaks['SNT_trace_length(um)'], extracted_peaks['Measured_trace_length(um)'], atol=1e-8 )
|
64 |
+
assert list(extracted_peaks['Trace_foci_number']) == [2,2,1,2,1]
|
65 |
+
|
66 |
+
def test_image_3(script_loc):
|
67 |
+
|
68 |
+
config = { 'sphere_radius': 0.1984125,
|
69 |
+
'peak_threshold': 0.4,
|
70 |
+
'xy_res': 0.0396825,
|
71 |
+
'z_res': 0.1095510,
|
72 |
+
'threshold_type': 'per-trace',
|
73 |
+
'use_corrected_positions': True,
|
74 |
+
'screening_distance': 10,
|
75 |
+
|
76 |
+
}
|
77 |
+
|
78 |
+
data_loc = script_loc.parent.parent / 'test_data' / 'arenosa SN A1243 image 18-20230726T142725Z-001' / 'arenosa SN A1243 image 18'
|
79 |
+
|
80 |
+
|
81 |
+
image_input = data_loc / 'HEI10.tif'
|
82 |
+
path_input = data_loc / 'SNT_Data.traces'
|
83 |
+
|
84 |
+
paths, traces, fig, extracted_peaks = analyse_paths('Cell', image_input, path_input, config)
|
85 |
+
|
86 |
+
assert np.allclose(extracted_peaks['SNT_trace_length(um)'], extracted_peaks['Measured_trace_length(um)'], atol=1e-8 )
|
87 |
+
assert list(extracted_peaks['Trace_foci_number']) == [2,1,1,1,2,1,1,1]
|
88 |
+
|
89 |
+
def test_image_4(script_loc):
|
90 |
+
|
91 |
+
config = { 'sphere_radius': 10.,
|
92 |
+
'peak_threshold': 0.4,
|
93 |
+
'xy_res': 1,
|
94 |
+
'z_res': 1,
|
95 |
+
'threshold_type': 'per-trace',
|
96 |
+
'use_corrected_positions': True,
|
97 |
+
'screening_distance': 10,
|
98 |
+
|
99 |
+
}
|
100 |
+
|
101 |
+
data_loc = script_loc.parent.parent / 'test_data' / 'mammalian 2D-20230821T180708Z-001' / 'mammalian 2D' / '1'
|
102 |
+
|
103 |
+
|
104 |
+
image_input = data_loc / 'C2-Pachytene SIM-1.tif'
|
105 |
+
path_input = data_loc / 'SNT_Data.traces'
|
106 |
+
|
107 |
+
paths, traces, fig, extracted_peaks = analyse_paths('Cell', image_input, path_input, config)
|
108 |
+
|
109 |
+
assert np.allclose(extracted_peaks['SNT_trace_length(um)'], extracted_peaks['Measured_trace_length(um)'], atol=1e-8 )
|
110 |
+
|
111 |
+
valid_results = [{1}, {1}, {2, 3}, {1, 2}, {1, 2}, {1}, {1}, {2}, {1}, {1}, {1, 2}, {1}, {1, 2}, {1, 2}, {1}, {1}, {1}, {1}, {1}]
|
112 |
+
measured = extracted_peaks['Trace_foci_number']
|
113 |
+
|
114 |
+
print(measured)
|
115 |
+
assert len(measured) == len(valid_results)
|
116 |
+
assert(all(m in v for m,v in zip(measured, valid_results)))
|
117 |
+
|
118 |
+
|
119 |
+
|
120 |
+
def test_image_5(script_loc):
|
121 |
+
|
122 |
+
config = { 'sphere_radius': 0.3,
|
123 |
+
'peak_threshold': 0.4,
|
124 |
+
'xy_res': 0.1023810,
|
125 |
+
'z_res': 1,
|
126 |
+
'threshold_type': 'per-trace',
|
127 |
+
'use_corrected_positions': True,
|
128 |
+
'screening_distance': 10,
|
129 |
+
|
130 |
+
}
|
131 |
+
|
132 |
+
data_loc = script_loc.parent.parent / 'test_data' / 'mammalian 2D-20230821T180708Z-001' / 'mammalian 2D' / '2'
|
133 |
+
|
134 |
+
|
135 |
+
image_input = data_loc / 'C1-CNTD1FHFH CSHA 1in5000 22612 Slide 6-102-1.tif'
|
136 |
+
path_input = data_loc / 'SNT_Data.traces'
|
137 |
+
|
138 |
+
paths, traces, fig, extracted_peaks = analyse_paths('Cell', image_input, path_input, config)
|
139 |
+
|
140 |
+
assert np.allclose(extracted_peaks['SNT_trace_length(um)'], extracted_peaks['Measured_trace_length(um)'], atol=1e-8 )
|
141 |
+
|
142 |
+
valid_results = [1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1]
|
143 |
+
measured = extracted_peaks['Trace_foci_number']
|
144 |
+
|
145 |
+
assert list(measured) == valid_results
|
146 |
+
|
147 |
+
|
148 |
+
|
149 |
+
|
150 |
+
|