|
|
|
import gradio as gr |
|
from tifffile import imread |
|
from PIL import Image |
|
from path_analysis.analyse import analyse_paths |
|
import numpy as np |
|
|
|
|
|
|
|
def preview_image(file1): |
|
if file1: |
|
print('Uploading image', file1.name) |
|
im = imread(file1.name) |
|
print(im.ndim, im.shape) |
|
if im.ndim>2: |
|
return Image.fromarray(np.max(im, axis=0)) |
|
else: |
|
return Image.fromarray(im) |
|
else: |
|
return None |
|
|
|
|
|
with gr.Blocks() as demo: |
|
with gr.Row(): |
|
with gr.Column(): |
|
|
|
cellid_input = gr.Textbox(label="Cell ID", placeholder="Image_1") |
|
image_input = gr.File(label="Input foci image") |
|
image_preview = gr.Image(label="Max projection of foci image") |
|
image_input.change(fn=preview_image, inputs=image_input, outputs=image_preview) |
|
path_input = gr.File(label="SNT traces file") |
|
|
|
|
|
with gr.Accordion("Additional options ..."): |
|
sphere_radius = gr.Number(label="Trace sphere radius (um)", value=0.1984125, interactive=True) |
|
peak_threshold = gr.Number(label="Peak relative threshold", value=0.4, interactive=True) |
|
|
|
with gr.Row(): |
|
xy_res = gr.Number(label='xy-yesolution (um)', value=0.0396825, interactive=True) |
|
z_res = gr.Number(label='z resolution (um)', value=0.0909184, interactive=True) |
|
|
|
|
|
threshold_type = gr.Radio(["per-trace", "per-cell"], label="Threshold-type", value="per-trace", interactive=True) |
|
use_corrected_positions = gr.Checkbox(label="Correct foci position measurements", value=True, interactive=True) |
|
screening_distance = gr.Number(label='Screening distance (voxels)', value=10, interactive=True) |
|
|
|
|
|
|
|
with gr.Column(): |
|
trace_output = gr.Image(label="Overlayed paths") |
|
image_output=gr.Gallery(label="Traced paths") |
|
plot_output=gr.Plot(label="Foci intensity traces") |
|
data_output=gr.DataFrame(label="Detected peak data") |
|
data_file_output=gr.File(label="Output data file (.csv)") |
|
|
|
|
|
def process(cellid_input, image_input, path_input, sphere_radius, peak_threshold, xy_res, z_res, threshold_type, use_corrected_positions, screening_distance): |
|
|
|
config = { 'sphere_radius': sphere_radius, |
|
'peak_threshold': peak_threshold, |
|
'xy_res': xy_res, |
|
'z_res': z_res, |
|
'threshold_type': threshold_type, |
|
'use_corrected_positions': use_corrected_positions, |
|
'screening_distance': screening_distance, |
|
} |
|
|
|
|
|
paths, traces, fig, extracted_peaks = analyse_paths(cellid_input, image_input.name, path_input.name, config) |
|
extracted_peaks.to_csv('output.csv') |
|
print('extracted', extracted_peaks) |
|
return paths, [Image.fromarray(im) for im in traces], fig, extracted_peaks, 'output.csv' |
|
|
|
|
|
with gr.Row(): |
|
greet_btn = gr.Button("Process") |
|
greet_btn.click(fn=process, inputs=[cellid_input, image_input, path_input, sphere_radius, peak_threshold, xy_res, z_res, threshold_type, use_corrected_positions, screening_distance], outputs=[trace_output, image_output, plot_output, data_output, data_file_output], api_name="process") |
|
|
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|