Apple_elm_test / app.py
JERNGOC's picture
Update app.py
f4972b5 verified
import os
from threading import Thread
from typing import Iterator
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
MAX_MAX_NEW_TOKENS = 1024
DEFAULT_MAX_NEW_TOKENS = 256
MAX_INPUT_TOKEN_LENGTH = 512
DESCRIPTION = """\
# OpenELM-3B-Instruct
This Space demonstrates [OpenELM-3B-Instruct](https://huggingface.co/apple/OpenELM-3B-Instruct) by Apple. Please, check the original model card for details.
You can see the other models of the OpenELM family [here](https://huggingface.co/apple/OpenELM)
The following Colab notebooks are available:
* [OpenELM-3B-Instruct (GPU)](https://gist.github.com/Norod/4f11bb36bea5c548d18f10f9d7ec09b0)
* [OpenELM-270M (CPU)](https://gist.github.com/Norod/5a311a8e0a774b5c35919913545b7af4)
You might also be interested in checking out Apple's [CoreNet Github page](https://github.com/apple/corenet?tab=readme-ov-file).
If you duplicate this space, make sure you have access to [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf)
because this model uses it as a tokenizer.
# Note: Use this model for only for completing sentences and instruction following.
## While the user interface is a chatbot for convenience, this is an instruction tuned model not fine-tuned for chatbot tasks. As such, the model is not provided a chat history and will complete your text based on the last given prompt only.
"""
LICENSE = """
<p/>
---
As a derivative work of [OpenELM-3B-Instruct](https://huggingface.co/apple/OpenELM-3B-Instruct) by Apple,
this demo is governed by the original [license](https://huggingface.co/apple/OpenELM-3B-Instruct/blob/main/LICENSE).
"""
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
# Global variables
model = None
tokenizer = None
def initialize_model_and_tokenizer():
global model, tokenizer
if torch.cuda.is_available():
model_id = "apple/OpenELM-3B-Instruct"
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", trust_remote_code=True, low_cpu_mem_usage=True)
tokenizer_id = "meta-llama/Llama-2-7b-hf"
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
tokenizer.pad_token_id = tokenizer.eos_token_id
else:
print("CUDA is not available. Model and tokenizer will not be initialized.")
initialize_model_and_tokenizer()
@spaces.GPU
def generate(
message: str,
chat_history: list[tuple[str, str]],
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.4,
) -> Iterator[str]:
global model, tokenizer
if tokenizer is None or model is None:
yield "Error: Model or tokenizer not initialized. Make sure you have GPU support and the necessary model access."
return
try:
input_ids = tokenizer([message], return_tensors="pt").input_ids
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids=input_ids,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
pad_token_id=tokenizer.eos_token_id,
repetition_penalty=repetition_penalty,
no_repeat_ngram_size=5,
early_stopping=True,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
except Exception as e:
yield f"An error occurred: {str(e)}"
chat_interface = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="Temperature",
minimum=0.1,
maximum=4.0,
step=0.1,
value=0.6,
),
gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.9,
),
gr.Slider(
label="Top-k",
minimum=1,
maximum=1000,
step=1,
value=50,
),
gr.Slider(
label="Repetition penalty",
minimum=1.0,
maximum=2.0,
step=0.05,
value=1.4,
),
],
stop_btn=None,
examples=[
["A recipe for a chocolate cake:"],
["Can you explain briefly to me what is the Python programming language?"],
["Explain the plot of Cinderella in a sentence."],
["Question: What is the capital of France?\nAnswer:"],
["Question: I am very tired, what should I do?\nAnswer:"],
],
)
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
chat_interface.render()
gr.Markdown(LICENSE)
if __name__ == "__main__":
demo.queue(max_size=20).launch()