|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Any, Callable, Dict, List, Optional, Tuple, Union |
|
|
|
import cv2 |
|
import math |
|
|
|
import numpy as np |
|
import PIL.Image |
|
import torch |
|
import torch.nn.functional as F |
|
from transformers import CLIPTokenizer |
|
|
|
from diffusers.image_processor import PipelineImageInput |
|
|
|
from diffusers.models import ControlNetModel |
|
|
|
from diffusers.utils import ( |
|
deprecate, |
|
logging, |
|
replace_example_docstring, |
|
) |
|
from diffusers.utils.torch_utils import is_compiled_module, is_torch_version |
|
from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput |
|
|
|
from diffusers import StableDiffusionXLControlNetPipeline |
|
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel |
|
from diffusers.utils.import_utils import is_xformers_available |
|
|
|
from ip_adapter.resampler import Resampler |
|
|
|
from ip_adapter.attention_processor import AttnProcessor, IPAttnProcessor |
|
from ip_adapter.attention_processor import region_control |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
EXAMPLE_DOC_STRING = """ |
|
Examples: |
|
```py |
|
>>> # !pip install opencv-python transformers accelerate insightface |
|
>>> import diffusers |
|
>>> from diffusers.utils import load_image |
|
>>> from diffusers.models import ControlNetModel |
|
|
|
>>> import cv2 |
|
>>> import torch |
|
>>> import numpy as np |
|
>>> from PIL import Image |
|
|
|
>>> from insightface.app import FaceAnalysis |
|
>>> from pipeline_stable_diffusion_xl_instantid import StableDiffusionXLInstantIDPipeline, draw_kps |
|
|
|
>>> # download 'antelopev2' under ./models |
|
>>> app = FaceAnalysis(name='antelopev2', root='./', providers=['CUDAExecutionProvider', 'CPUExecutionProvider']) |
|
>>> app.prepare(ctx_id=0, det_size=(640, 640)) |
|
|
|
>>> # download models under ./checkpoints |
|
>>> face_adapter = f'./checkpoints/ip-adapter.bin' |
|
>>> controlnet_path = f'./checkpoints/ControlNetModel' |
|
|
|
>>> # load IdentityNet |
|
>>> controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16) |
|
|
|
>>> pipe = StableDiffusionXLInstantIDPipeline.from_pretrained( |
|
... "stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, torch_dtype=torch.float16 |
|
... ) |
|
>>> pipe.cuda() |
|
|
|
>>> # load adapter |
|
>>> pipe.load_ip_adapter_instantid(face_adapter) |
|
|
|
>>> prompt = "analog film photo of a man. faded film, desaturated, 35mm photo, grainy, vignette, vintage, Kodachrome, Lomography, stained, highly detailed, found footage, masterpiece, best quality" |
|
>>> negative_prompt = "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured (lowres, low quality, worst quality:1.2), (text:1.2), watermark, painting, drawing, illustration, glitch,deformed, mutated, cross-eyed, ugly, disfigured" |
|
|
|
>>> # load an image |
|
>>> image = load_image("your-example.jpg") |
|
|
|
>>> face_info = app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))[-1] |
|
>>> face_emb = face_info['embedding'] |
|
>>> face_kps = draw_kps(face_image, face_info['kps']) |
|
|
|
>>> pipe.set_ip_adapter_scale(0.8) |
|
|
|
>>> # generate image |
|
>>> image = pipe( |
|
... prompt, image_embeds=face_emb, image=face_kps, controlnet_conditioning_scale=0.8 |
|
... ).images[0] |
|
``` |
|
""" |
|
|
|
|
|
from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipeline |
|
class LongPromptWeight(object): |
|
|
|
""" |
|
Copied from https://github.com/huggingface/diffusers/blob/main/examples/community/lpw_stable_diffusion_xl.py |
|
""" |
|
|
|
def __init__(self) -> None: |
|
pass |
|
|
|
def parse_prompt_attention(self, text): |
|
""" |
|
Parses a string with attention tokens and returns a list of pairs: text and its associated weight. |
|
Accepted tokens are: |
|
(abc) - increases attention to abc by a multiplier of 1.1 |
|
(abc:3.12) - increases attention to abc by a multiplier of 3.12 |
|
[abc] - decreases attention to abc by a multiplier of 1.1 |
|
\( - literal character '(' |
|
\[ - literal character '[' |
|
\) - literal character ')' |
|
\] - literal character ']' |
|
\\ - literal character '\' |
|
anything else - just text |
|
|
|
>>> parse_prompt_attention('normal text') |
|
[['normal text', 1.0]] |
|
>>> parse_prompt_attention('an (important) word') |
|
[['an ', 1.0], ['important', 1.1], [' word', 1.0]] |
|
>>> parse_prompt_attention('(unbalanced') |
|
[['unbalanced', 1.1]] |
|
>>> parse_prompt_attention('\(literal\]') |
|
[['(literal]', 1.0]] |
|
>>> parse_prompt_attention('(unnecessary)(parens)') |
|
[['unnecessaryparens', 1.1]] |
|
>>> parse_prompt_attention('a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).') |
|
[['a ', 1.0], |
|
['house', 1.5730000000000004], |
|
[' ', 1.1], |
|
['on', 1.0], |
|
[' a ', 1.1], |
|
['hill', 0.55], |
|
[', sun, ', 1.1], |
|
['sky', 1.4641000000000006], |
|
['.', 1.1]] |
|
""" |
|
import re |
|
|
|
re_attention = re.compile( |
|
r""" |
|
\\\(|\\\)|\\\[|\\]|\\\\|\\|\(|\[|:([+-]?[.\d]+)\)| |
|
\)|]|[^\\()\[\]:]+|: |
|
""", |
|
re.X, |
|
) |
|
|
|
re_break = re.compile(r"\s*\bBREAK\b\s*", re.S) |
|
|
|
res = [] |
|
round_brackets = [] |
|
square_brackets = [] |
|
|
|
round_bracket_multiplier = 1.1 |
|
square_bracket_multiplier = 1 / 1.1 |
|
|
|
def multiply_range(start_position, multiplier): |
|
for p in range(start_position, len(res)): |
|
res[p][1] *= multiplier |
|
|
|
for m in re_attention.finditer(text): |
|
text = m.group(0) |
|
weight = m.group(1) |
|
|
|
if text.startswith("\\"): |
|
res.append([text[1:], 1.0]) |
|
elif text == "(": |
|
round_brackets.append(len(res)) |
|
elif text == "[": |
|
square_brackets.append(len(res)) |
|
elif weight is not None and len(round_brackets) > 0: |
|
multiply_range(round_brackets.pop(), float(weight)) |
|
elif text == ")" and len(round_brackets) > 0: |
|
multiply_range(round_brackets.pop(), round_bracket_multiplier) |
|
elif text == "]" and len(square_brackets) > 0: |
|
multiply_range(square_brackets.pop(), square_bracket_multiplier) |
|
else: |
|
parts = re.split(re_break, text) |
|
for i, part in enumerate(parts): |
|
if i > 0: |
|
res.append(["BREAK", -1]) |
|
res.append([part, 1.0]) |
|
|
|
for pos in round_brackets: |
|
multiply_range(pos, round_bracket_multiplier) |
|
|
|
for pos in square_brackets: |
|
multiply_range(pos, square_bracket_multiplier) |
|
|
|
if len(res) == 0: |
|
res = [["", 1.0]] |
|
|
|
|
|
i = 0 |
|
while i + 1 < len(res): |
|
if res[i][1] == res[i + 1][1]: |
|
res[i][0] += res[i + 1][0] |
|
res.pop(i + 1) |
|
else: |
|
i += 1 |
|
|
|
return res |
|
|
|
def get_prompts_tokens_with_weights(self, clip_tokenizer: CLIPTokenizer, prompt: str): |
|
""" |
|
Get prompt token ids and weights, this function works for both prompt and negative prompt |
|
|
|
Args: |
|
pipe (CLIPTokenizer) |
|
A CLIPTokenizer |
|
prompt (str) |
|
A prompt string with weights |
|
|
|
Returns: |
|
text_tokens (list) |
|
A list contains token ids |
|
text_weight (list) |
|
A list contains the correspodent weight of token ids |
|
|
|
Example: |
|
import torch |
|
from transformers import CLIPTokenizer |
|
|
|
clip_tokenizer = CLIPTokenizer.from_pretrained( |
|
"stablediffusionapi/deliberate-v2" |
|
, subfolder = "tokenizer" |
|
, dtype = torch.float16 |
|
) |
|
|
|
token_id_list, token_weight_list = get_prompts_tokens_with_weights( |
|
clip_tokenizer = clip_tokenizer |
|
,prompt = "a (red:1.5) cat"*70 |
|
) |
|
""" |
|
texts_and_weights = self.parse_prompt_attention(prompt) |
|
text_tokens, text_weights = [], [] |
|
for word, weight in texts_and_weights: |
|
|
|
token = clip_tokenizer(word, truncation=False).input_ids[1:-1] |
|
|
|
|
|
|
|
text_tokens = [*text_tokens, *token] |
|
|
|
|
|
|
|
chunk_weights = [weight] * len(token) |
|
|
|
|
|
text_weights = [*text_weights, *chunk_weights] |
|
return text_tokens, text_weights |
|
|
|
def group_tokens_and_weights(self, token_ids: list, weights: list, pad_last_block=False): |
|
""" |
|
Produce tokens and weights in groups and pad the missing tokens |
|
|
|
Args: |
|
token_ids (list) |
|
The token ids from tokenizer |
|
weights (list) |
|
The weights list from function get_prompts_tokens_with_weights |
|
pad_last_block (bool) |
|
Control if fill the last token list to 75 tokens with eos |
|
Returns: |
|
new_token_ids (2d list) |
|
new_weights (2d list) |
|
|
|
Example: |
|
token_groups,weight_groups = group_tokens_and_weights( |
|
token_ids = token_id_list |
|
, weights = token_weight_list |
|
) |
|
""" |
|
bos, eos = 49406, 49407 |
|
|
|
|
|
new_token_ids = [] |
|
new_weights = [] |
|
while len(token_ids) >= 75: |
|
|
|
head_75_tokens = [token_ids.pop(0) for _ in range(75)] |
|
head_75_weights = [weights.pop(0) for _ in range(75)] |
|
|
|
|
|
temp_77_token_ids = [bos] + head_75_tokens + [eos] |
|
temp_77_weights = [1.0] + head_75_weights + [1.0] |
|
|
|
|
|
new_token_ids.append(temp_77_token_ids) |
|
new_weights.append(temp_77_weights) |
|
|
|
|
|
if len(token_ids) >= 0: |
|
padding_len = 75 - len(token_ids) if pad_last_block else 0 |
|
|
|
temp_77_token_ids = [bos] + token_ids + [eos] * padding_len + [eos] |
|
new_token_ids.append(temp_77_token_ids) |
|
|
|
temp_77_weights = [1.0] + weights + [1.0] * padding_len + [1.0] |
|
new_weights.append(temp_77_weights) |
|
|
|
return new_token_ids, new_weights |
|
|
|
def get_weighted_text_embeddings_sdxl( |
|
self, |
|
pipe: StableDiffusionXLPipeline, |
|
prompt: str = "", |
|
prompt_2: str = None, |
|
neg_prompt: str = "", |
|
neg_prompt_2: str = None, |
|
prompt_embeds=None, |
|
negative_prompt_embeds=None, |
|
pooled_prompt_embeds=None, |
|
negative_pooled_prompt_embeds=None, |
|
extra_emb=None, |
|
extra_emb_alpha=0.6, |
|
): |
|
""" |
|
This function can process long prompt with weights, no length limitation |
|
for Stable Diffusion XL |
|
|
|
Args: |
|
pipe (StableDiffusionPipeline) |
|
prompt (str) |
|
prompt_2 (str) |
|
neg_prompt (str) |
|
neg_prompt_2 (str) |
|
Returns: |
|
prompt_embeds (torch.Tensor) |
|
neg_prompt_embeds (torch.Tensor) |
|
""" |
|
|
|
if prompt_embeds is not None and \ |
|
negative_prompt_embeds is not None and \ |
|
pooled_prompt_embeds is not None and \ |
|
negative_pooled_prompt_embeds is not None: |
|
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds |
|
|
|
if prompt_2: |
|
prompt = f"{prompt} {prompt_2}" |
|
|
|
if neg_prompt_2: |
|
neg_prompt = f"{neg_prompt} {neg_prompt_2}" |
|
|
|
eos = pipe.tokenizer.eos_token_id |
|
|
|
|
|
prompt_tokens, prompt_weights = self.get_prompts_tokens_with_weights(pipe.tokenizer, prompt) |
|
neg_prompt_tokens, neg_prompt_weights = self.get_prompts_tokens_with_weights(pipe.tokenizer, neg_prompt) |
|
|
|
|
|
|
|
|
|
|
|
prompt_tokens_2, prompt_weights_2 = self.get_prompts_tokens_with_weights(pipe.tokenizer, prompt) |
|
neg_prompt_tokens_2, neg_prompt_weights_2 = self.get_prompts_tokens_with_weights(pipe.tokenizer, neg_prompt) |
|
|
|
|
|
prompt_token_len = len(prompt_tokens) |
|
neg_prompt_token_len = len(neg_prompt_tokens) |
|
|
|
if prompt_token_len > neg_prompt_token_len: |
|
|
|
neg_prompt_tokens = neg_prompt_tokens + [eos] * abs(prompt_token_len - neg_prompt_token_len) |
|
neg_prompt_weights = neg_prompt_weights + [1.0] * abs(prompt_token_len - neg_prompt_token_len) |
|
else: |
|
|
|
prompt_tokens = prompt_tokens + [eos] * abs(prompt_token_len - neg_prompt_token_len) |
|
prompt_weights = prompt_weights + [1.0] * abs(prompt_token_len - neg_prompt_token_len) |
|
|
|
|
|
prompt_token_len_2 = len(prompt_tokens_2) |
|
neg_prompt_token_len_2 = len(neg_prompt_tokens_2) |
|
|
|
if prompt_token_len_2 > neg_prompt_token_len_2: |
|
|
|
neg_prompt_tokens_2 = neg_prompt_tokens_2 + [eos] * abs(prompt_token_len_2 - neg_prompt_token_len_2) |
|
neg_prompt_weights_2 = neg_prompt_weights_2 + [1.0] * abs(prompt_token_len_2 - neg_prompt_token_len_2) |
|
else: |
|
|
|
prompt_tokens_2 = prompt_tokens_2 + [eos] * abs(prompt_token_len_2 - neg_prompt_token_len_2) |
|
prompt_weights_2 = prompt_weights + [1.0] * abs(prompt_token_len_2 - neg_prompt_token_len_2) |
|
|
|
embeds = [] |
|
neg_embeds = [] |
|
|
|
prompt_token_groups, prompt_weight_groups = self.group_tokens_and_weights(prompt_tokens.copy(), prompt_weights.copy()) |
|
|
|
neg_prompt_token_groups, neg_prompt_weight_groups = self.group_tokens_and_weights( |
|
neg_prompt_tokens.copy(), neg_prompt_weights.copy() |
|
) |
|
|
|
prompt_token_groups_2, prompt_weight_groups_2 = self.group_tokens_and_weights( |
|
prompt_tokens_2.copy(), prompt_weights_2.copy() |
|
) |
|
|
|
neg_prompt_token_groups_2, neg_prompt_weight_groups_2 = self.group_tokens_and_weights( |
|
neg_prompt_tokens_2.copy(), neg_prompt_weights_2.copy() |
|
) |
|
|
|
|
|
for i in range(len(prompt_token_groups)): |
|
|
|
token_tensor = torch.tensor([prompt_token_groups[i]], dtype=torch.long, device=pipe.device) |
|
weight_tensor = torch.tensor(prompt_weight_groups[i], dtype=torch.float16, device=pipe.device) |
|
|
|
token_tensor_2 = torch.tensor([prompt_token_groups_2[i]], dtype=torch.long, device=pipe.device) |
|
|
|
|
|
prompt_embeds_1 = pipe.text_encoder(token_tensor.to(pipe.device), output_hidden_states=True) |
|
prompt_embeds_1_hidden_states = prompt_embeds_1.hidden_states[-2] |
|
|
|
|
|
prompt_embeds_2 = pipe.text_encoder_2(token_tensor_2.to(pipe.device), output_hidden_states=True) |
|
prompt_embeds_2_hidden_states = prompt_embeds_2.hidden_states[-2] |
|
pooled_prompt_embeds = prompt_embeds_2[0] |
|
|
|
prompt_embeds_list = [prompt_embeds_1_hidden_states, prompt_embeds_2_hidden_states] |
|
token_embedding = torch.concat(prompt_embeds_list, dim=-1).squeeze(0) |
|
|
|
for j in range(len(weight_tensor)): |
|
if weight_tensor[j] != 1.0: |
|
token_embedding[j] = ( |
|
token_embedding[-1] + (token_embedding[j] - token_embedding[-1]) * weight_tensor[j] |
|
) |
|
|
|
token_embedding = token_embedding.unsqueeze(0) |
|
embeds.append(token_embedding) |
|
|
|
|
|
neg_token_tensor = torch.tensor([neg_prompt_token_groups[i]], dtype=torch.long, device=pipe.device) |
|
neg_token_tensor_2 = torch.tensor([neg_prompt_token_groups_2[i]], dtype=torch.long, device=pipe.device) |
|
neg_weight_tensor = torch.tensor(neg_prompt_weight_groups[i], dtype=torch.float16, device=pipe.device) |
|
|
|
|
|
neg_prompt_embeds_1 = pipe.text_encoder(neg_token_tensor.to(pipe.device), output_hidden_states=True) |
|
neg_prompt_embeds_1_hidden_states = neg_prompt_embeds_1.hidden_states[-2] |
|
|
|
|
|
neg_prompt_embeds_2 = pipe.text_encoder_2(neg_token_tensor_2.to(pipe.device), output_hidden_states=True) |
|
neg_prompt_embeds_2_hidden_states = neg_prompt_embeds_2.hidden_states[-2] |
|
negative_pooled_prompt_embeds = neg_prompt_embeds_2[0] |
|
|
|
neg_prompt_embeds_list = [neg_prompt_embeds_1_hidden_states, neg_prompt_embeds_2_hidden_states] |
|
neg_token_embedding = torch.concat(neg_prompt_embeds_list, dim=-1).squeeze(0) |
|
|
|
for z in range(len(neg_weight_tensor)): |
|
if neg_weight_tensor[z] != 1.0: |
|
neg_token_embedding[z] = ( |
|
neg_token_embedding[-1] + (neg_token_embedding[z] - neg_token_embedding[-1]) * neg_weight_tensor[z] |
|
) |
|
|
|
neg_token_embedding = neg_token_embedding.unsqueeze(0) |
|
neg_embeds.append(neg_token_embedding) |
|
|
|
prompt_embeds = torch.cat(embeds, dim=1) |
|
negative_prompt_embeds = torch.cat(neg_embeds, dim=1) |
|
|
|
if extra_emb is not None: |
|
extra_emb = extra_emb.to(prompt_embeds.device, dtype=prompt_embeds.dtype) * extra_emb_alpha |
|
prompt_embeds = torch.cat([prompt_embeds, extra_emb], 1) |
|
negative_prompt_embeds = torch.cat([negative_prompt_embeds, torch.zeros_like(extra_emb)], 1) |
|
print(f'fix prompt_embeds, extra_emb_alpha={extra_emb_alpha}') |
|
|
|
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds |
|
|
|
def get_prompt_embeds(self, *args, **kwargs): |
|
prompt_embeds, negative_prompt_embeds, _, _ = self.get_weighted_text_embeddings_sdxl(*args, **kwargs) |
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) |
|
return prompt_embeds |
|
|
|
|
|
class StableDiffusionXLInstantIDPipeline(StableDiffusionXLControlNetPipeline): |
|
|
|
def cuda(self, dtype=torch.float16, use_xformers=False): |
|
self.to('cuda', dtype) |
|
|
|
if hasattr(self, 'image_proj_model'): |
|
self.image_proj_model.to(self.unet.device).to(self.unet.dtype) |
|
|
|
if use_xformers: |
|
if is_xformers_available(): |
|
import xformers |
|
from packaging import version |
|
|
|
xformers_version = version.parse(xformers.__version__) |
|
if xformers_version == version.parse("0.0.16"): |
|
logger.warn( |
|
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." |
|
) |
|
self.enable_xformers_memory_efficient_attention() |
|
else: |
|
raise ValueError("xformers is not available. Make sure it is installed correctly") |
|
|
|
def load_ip_adapter_instantid(self, model_ckpt, image_emb_dim=512, num_tokens=16, scale=0.5): |
|
self.set_image_proj_model(model_ckpt, image_emb_dim, num_tokens) |
|
self.set_ip_adapter(model_ckpt, num_tokens, scale) |
|
|
|
def set_image_proj_model(self, model_ckpt, image_emb_dim=512, num_tokens=16): |
|
|
|
image_proj_model = Resampler( |
|
dim=1280, |
|
depth=4, |
|
dim_head=64, |
|
heads=20, |
|
num_queries=num_tokens, |
|
embedding_dim=image_emb_dim, |
|
output_dim=self.unet.config.cross_attention_dim, |
|
ff_mult=4, |
|
) |
|
|
|
image_proj_model.eval() |
|
|
|
self.image_proj_model = image_proj_model.to(self.device, dtype=self.dtype) |
|
state_dict = torch.load(model_ckpt, map_location="cpu") |
|
if 'image_proj' in state_dict: |
|
state_dict = state_dict["image_proj"] |
|
self.image_proj_model.load_state_dict(state_dict) |
|
|
|
self.image_proj_model_in_features = image_emb_dim |
|
|
|
def set_ip_adapter(self, model_ckpt, num_tokens, scale): |
|
|
|
unet = self.unet |
|
attn_procs = {} |
|
for name in unet.attn_processors.keys(): |
|
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim |
|
if name.startswith("mid_block"): |
|
hidden_size = unet.config.block_out_channels[-1] |
|
elif name.startswith("up_blocks"): |
|
block_id = int(name[len("up_blocks.")]) |
|
hidden_size = list(reversed(unet.config.block_out_channels))[block_id] |
|
elif name.startswith("down_blocks"): |
|
block_id = int(name[len("down_blocks.")]) |
|
hidden_size = unet.config.block_out_channels[block_id] |
|
if cross_attention_dim is None: |
|
attn_procs[name] = AttnProcessor().to(unet.device, dtype=unet.dtype) |
|
else: |
|
attn_procs[name] = IPAttnProcessor(hidden_size=hidden_size, |
|
cross_attention_dim=cross_attention_dim, |
|
scale=scale, |
|
num_tokens=num_tokens).to(unet.device, dtype=unet.dtype) |
|
unet.set_attn_processor(attn_procs) |
|
|
|
state_dict = torch.load(model_ckpt, map_location="cpu") |
|
ip_layers = torch.nn.ModuleList(self.unet.attn_processors.values()) |
|
if 'ip_adapter' in state_dict: |
|
state_dict = state_dict['ip_adapter'] |
|
ip_layers.load_state_dict(state_dict) |
|
|
|
def set_ip_adapter_scale(self, scale): |
|
unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet |
|
for attn_processor in unet.attn_processors.values(): |
|
if isinstance(attn_processor, IPAttnProcessor): |
|
attn_processor.scale = scale |
|
|
|
def _encode_prompt_image_emb(self, prompt_image_emb, device, dtype, do_classifier_free_guidance): |
|
|
|
if isinstance(prompt_image_emb, torch.Tensor): |
|
prompt_image_emb = prompt_image_emb.clone().detach() |
|
else: |
|
prompt_image_emb = torch.tensor(prompt_image_emb) |
|
|
|
prompt_image_emb = prompt_image_emb.to(device=device, dtype=dtype) |
|
prompt_image_emb = prompt_image_emb.reshape([1, -1, self.image_proj_model_in_features]) |
|
|
|
if do_classifier_free_guidance: |
|
prompt_image_emb = torch.cat([torch.zeros_like(prompt_image_emb), prompt_image_emb], dim=0) |
|
else: |
|
prompt_image_emb = torch.cat([prompt_image_emb], dim=0) |
|
|
|
prompt_image_emb = self.image_proj_model(prompt_image_emb) |
|
return prompt_image_emb |
|
|
|
@torch.no_grad() |
|
@replace_example_docstring(EXAMPLE_DOC_STRING) |
|
def __call__( |
|
self, |
|
prompt: Union[str, List[str]] = None, |
|
prompt_2: Optional[Union[str, List[str]]] = None, |
|
image: PipelineImageInput = None, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
num_inference_steps: int = 50, |
|
guidance_scale: float = 5.0, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
negative_prompt_2: Optional[Union[str, List[str]]] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
image_embeds: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
controlnet_conditioning_scale: Union[float, List[float]] = 1.0, |
|
guess_mode: bool = False, |
|
control_guidance_start: Union[float, List[float]] = 0.0, |
|
control_guidance_end: Union[float, List[float]] = 1.0, |
|
original_size: Tuple[int, int] = None, |
|
crops_coords_top_left: Tuple[int, int] = (0, 0), |
|
target_size: Tuple[int, int] = None, |
|
negative_original_size: Optional[Tuple[int, int]] = None, |
|
negative_crops_coords_top_left: Tuple[int, int] = (0, 0), |
|
negative_target_size: Optional[Tuple[int, int]] = None, |
|
clip_skip: Optional[int] = None, |
|
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, |
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"], |
|
control_mask = None, |
|
**kwargs, |
|
): |
|
r""" |
|
The call function to the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. |
|
prompt_2 (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is |
|
used in both text-encoders. |
|
image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,: |
|
`List[List[torch.FloatTensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`): |
|
The ControlNet input condition to provide guidance to the `unet` for generation. If the type is |
|
specified as `torch.FloatTensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be |
|
accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If height |
|
and/or width are passed, `image` is resized accordingly. If multiple ControlNets are specified in |
|
`init`, images must be passed as a list such that each element of the list can be correctly batched for |
|
input to a single ControlNet. |
|
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): |
|
The height in pixels of the generated image. Anything below 512 pixels won't work well for |
|
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) |
|
and checkpoints that are not specifically fine-tuned on low resolutions. |
|
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): |
|
The width in pixels of the generated image. Anything below 512 pixels won't work well for |
|
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) |
|
and checkpoints that are not specifically fine-tuned on low resolutions. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
guidance_scale (`float`, *optional*, defaults to 5.0): |
|
A higher guidance scale value encourages the model to generate images closely linked to the text |
|
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide what to not include in image generation. If not defined, you need to |
|
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). |
|
negative_prompt_2 (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide what to not include in image generation. This is sent to `tokenizer_2` |
|
and `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders. |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (Ξ·) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies |
|
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make |
|
generation deterministic. |
|
latents (`torch.FloatTensor`, *optional*): |
|
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor is generated by sampling using the supplied random `generator`. |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not |
|
provided, text embeddings are generated from the `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If |
|
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. |
|
pooled_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs (prompt weighting). If |
|
not provided, pooled text embeddings are generated from `prompt` input argument. |
|
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs (prompt |
|
weighting). If not provided, pooled `negative_prompt_embeds` are generated from `negative_prompt` input |
|
argument. |
|
image_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated image embeddings. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generated image. Choose between `PIL.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a |
|
plain tuple. |
|
cross_attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in |
|
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0): |
|
The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added |
|
to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set |
|
the corresponding scale as a list. |
|
guess_mode (`bool`, *optional*, defaults to `False`): |
|
The ControlNet encoder tries to recognize the content of the input image even if you remove all |
|
prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended. |
|
control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0): |
|
The percentage of total steps at which the ControlNet starts applying. |
|
control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0): |
|
The percentage of total steps at which the ControlNet stops applying. |
|
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): |
|
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled. |
|
`original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as |
|
explained in section 2.2 of |
|
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). |
|
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)): |
|
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position |
|
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting |
|
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of |
|
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). |
|
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): |
|
For most cases, `target_size` should be set to the desired height and width of the generated image. If |
|
not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in |
|
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). |
|
negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): |
|
To negatively condition the generation process based on a specific image resolution. Part of SDXL's |
|
micro-conditioning as explained in section 2.2 of |
|
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more |
|
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. |
|
negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)): |
|
To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's |
|
micro-conditioning as explained in section 2.2 of |
|
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more |
|
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. |
|
negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): |
|
To negatively condition the generation process based on a target image resolution. It should be as same |
|
as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of |
|
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more |
|
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. |
|
clip_skip (`int`, *optional*): |
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that |
|
the output of the pre-final layer will be used for computing the prompt embeddings. |
|
callback_on_step_end (`Callable`, *optional*): |
|
A function that calls at the end of each denoising steps during the inference. The function is called |
|
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, |
|
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by |
|
`callback_on_step_end_tensor_inputs`. |
|
callback_on_step_end_tensor_inputs (`List`, *optional*): |
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list |
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the |
|
`._callback_tensor_inputs` attribute of your pipeine class. |
|
|
|
Examples: |
|
|
|
Returns: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: |
|
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, |
|
otherwise a `tuple` is returned containing the output images. |
|
""" |
|
lpw = LongPromptWeight() |
|
|
|
callback = kwargs.pop("callback", None) |
|
callback_steps = kwargs.pop("callback_steps", None) |
|
|
|
if callback is not None: |
|
deprecate( |
|
"callback", |
|
"1.0.0", |
|
"Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`", |
|
) |
|
if callback_steps is not None: |
|
deprecate( |
|
"callback_steps", |
|
"1.0.0", |
|
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`", |
|
) |
|
|
|
controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet |
|
|
|
|
|
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list): |
|
control_guidance_start = len(control_guidance_end) * [control_guidance_start] |
|
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list): |
|
control_guidance_end = len(control_guidance_start) * [control_guidance_end] |
|
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list): |
|
mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1 |
|
control_guidance_start, control_guidance_end = ( |
|
mult * [control_guidance_start], |
|
mult * [control_guidance_end], |
|
) |
|
|
|
|
|
self.check_inputs( |
|
prompt, |
|
prompt_2, |
|
image, |
|
callback_steps, |
|
negative_prompt, |
|
negative_prompt_2, |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds, |
|
controlnet_conditioning_scale, |
|
control_guidance_start, |
|
control_guidance_end, |
|
callback_on_step_end_tensor_inputs, |
|
) |
|
|
|
self._guidance_scale = guidance_scale |
|
self._clip_skip = clip_skip |
|
self._cross_attention_kwargs = cross_attention_kwargs |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
device = self._execution_device |
|
|
|
if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float): |
|
controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets) |
|
|
|
global_pool_conditions = ( |
|
controlnet.config.global_pool_conditions |
|
if isinstance(controlnet, ControlNetModel) |
|
else controlnet.nets[0].config.global_pool_conditions |
|
) |
|
guess_mode = guess_mode or global_pool_conditions |
|
|
|
|
|
( |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds, |
|
) = lpw.get_weighted_text_embeddings_sdxl( |
|
pipe=self, |
|
prompt=prompt, |
|
neg_prompt=negative_prompt, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, |
|
) |
|
|
|
|
|
prompt_image_emb = self._encode_prompt_image_emb(image_embeds, |
|
device, |
|
self.unet.dtype, |
|
self.do_classifier_free_guidance) |
|
|
|
|
|
if isinstance(controlnet, ControlNetModel): |
|
image = self.prepare_image( |
|
image=image, |
|
width=width, |
|
height=height, |
|
batch_size=batch_size * num_images_per_prompt, |
|
num_images_per_prompt=num_images_per_prompt, |
|
device=device, |
|
dtype=controlnet.dtype, |
|
do_classifier_free_guidance=self.do_classifier_free_guidance, |
|
guess_mode=guess_mode, |
|
) |
|
height, width = image.shape[-2:] |
|
elif isinstance(controlnet, MultiControlNetModel): |
|
images = [] |
|
|
|
for image_ in image: |
|
image_ = self.prepare_image( |
|
image=image_, |
|
width=width, |
|
height=height, |
|
batch_size=batch_size * num_images_per_prompt, |
|
num_images_per_prompt=num_images_per_prompt, |
|
device=device, |
|
dtype=controlnet.dtype, |
|
do_classifier_free_guidance=self.do_classifier_free_guidance, |
|
guess_mode=guess_mode, |
|
) |
|
|
|
images.append(image_) |
|
|
|
image = images |
|
height, width = image[0].shape[-2:] |
|
else: |
|
assert False |
|
|
|
|
|
if control_mask is not None: |
|
mask_weight_image = control_mask |
|
mask_weight_image = np.array(mask_weight_image) |
|
mask_weight_image_tensor = torch.from_numpy(mask_weight_image).to(device=device, dtype=prompt_embeds.dtype) |
|
mask_weight_image_tensor = mask_weight_image_tensor[:, :, 0] / 255. |
|
mask_weight_image_tensor = mask_weight_image_tensor[None, None] |
|
h, w = mask_weight_image_tensor.shape[-2:] |
|
control_mask_wight_image_list = [] |
|
for scale in [8, 8, 8, 16, 16, 16, 32, 32, 32]: |
|
scale_mask_weight_image_tensor = F.interpolate( |
|
mask_weight_image_tensor,(h // scale, w // scale), mode='bilinear') |
|
control_mask_wight_image_list.append(scale_mask_weight_image_tensor) |
|
region_mask = torch.from_numpy(np.array(control_mask)[:, :, 0]).to(self.unet.device, dtype=self.unet.dtype) / 255. |
|
region_control.prompt_image_conditioning = [dict(region_mask=region_mask)] |
|
else: |
|
control_mask_wight_image_list = None |
|
region_control.prompt_image_conditioning = [dict(region_mask=None)] |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device) |
|
timesteps = self.scheduler.timesteps |
|
self._num_timesteps = len(timesteps) |
|
|
|
|
|
num_channels_latents = self.unet.config.in_channels |
|
latents = self.prepare_latents( |
|
batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
height, |
|
width, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
|
|
|
|
timestep_cond = None |
|
if self.unet.config.time_cond_proj_dim is not None: |
|
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) |
|
timestep_cond = self.get_guidance_scale_embedding( |
|
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim |
|
).to(device=device, dtype=latents.dtype) |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
|
|
controlnet_keep = [] |
|
for i in range(len(timesteps)): |
|
keeps = [ |
|
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e) |
|
for s, e in zip(control_guidance_start, control_guidance_end) |
|
] |
|
controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps) |
|
|
|
|
|
if isinstance(image, list): |
|
original_size = original_size or image[0].shape[-2:] |
|
else: |
|
original_size = original_size or image.shape[-2:] |
|
target_size = target_size or (height, width) |
|
|
|
add_text_embeds = pooled_prompt_embeds |
|
if self.text_encoder_2 is None: |
|
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1]) |
|
else: |
|
text_encoder_projection_dim = self.text_encoder_2.config.projection_dim |
|
|
|
add_time_ids = self._get_add_time_ids( |
|
original_size, |
|
crops_coords_top_left, |
|
target_size, |
|
dtype=prompt_embeds.dtype, |
|
text_encoder_projection_dim=text_encoder_projection_dim, |
|
) |
|
|
|
if negative_original_size is not None and negative_target_size is not None: |
|
negative_add_time_ids = self._get_add_time_ids( |
|
negative_original_size, |
|
negative_crops_coords_top_left, |
|
negative_target_size, |
|
dtype=prompt_embeds.dtype, |
|
text_encoder_projection_dim=text_encoder_projection_dim, |
|
) |
|
else: |
|
negative_add_time_ids = add_time_ids |
|
|
|
if self.do_classifier_free_guidance: |
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) |
|
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0) |
|
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0) |
|
|
|
prompt_embeds = prompt_embeds.to(device) |
|
add_text_embeds = add_text_embeds.to(device) |
|
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1) |
|
encoder_hidden_states = torch.cat([prompt_embeds, prompt_image_emb], dim=1) |
|
|
|
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order |
|
is_unet_compiled = is_compiled_module(self.unet) |
|
is_controlnet_compiled = is_compiled_module(self.controlnet) |
|
is_torch_higher_equal_2_1 = is_torch_version(">=", "2.1") |
|
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
|
|
|
|
if (is_unet_compiled and is_controlnet_compiled) and is_torch_higher_equal_2_1: |
|
torch._inductor.cudagraph_mark_step_begin() |
|
|
|
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents |
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids} |
|
|
|
|
|
if guess_mode and self.do_classifier_free_guidance: |
|
|
|
control_model_input = latents |
|
control_model_input = self.scheduler.scale_model_input(control_model_input, t) |
|
controlnet_prompt_embeds = prompt_embeds.chunk(2)[1] |
|
controlnet_added_cond_kwargs = { |
|
"text_embeds": add_text_embeds.chunk(2)[1], |
|
"time_ids": add_time_ids.chunk(2)[1], |
|
} |
|
else: |
|
control_model_input = latent_model_input |
|
controlnet_prompt_embeds = prompt_embeds |
|
controlnet_added_cond_kwargs = added_cond_kwargs |
|
|
|
if isinstance(controlnet_keep[i], list): |
|
cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])] |
|
else: |
|
controlnet_cond_scale = controlnet_conditioning_scale |
|
if isinstance(controlnet_cond_scale, list): |
|
controlnet_cond_scale = controlnet_cond_scale[0] |
|
cond_scale = controlnet_cond_scale * controlnet_keep[i] |
|
|
|
down_block_res_samples, mid_block_res_sample = self.controlnet( |
|
control_model_input, |
|
t, |
|
encoder_hidden_states=prompt_image_emb, |
|
controlnet_cond=image, |
|
conditioning_scale=cond_scale, |
|
guess_mode=guess_mode, |
|
added_cond_kwargs=controlnet_added_cond_kwargs, |
|
return_dict=False, |
|
) |
|
|
|
|
|
if control_mask_wight_image_list is not None: |
|
down_block_res_samples = [ |
|
down_block_res_sample * mask_weight |
|
for down_block_res_sample, mask_weight in zip(down_block_res_samples, control_mask_wight_image_list) |
|
] |
|
mid_block_res_sample *= control_mask_wight_image_list[-1] |
|
|
|
if guess_mode and self.do_classifier_free_guidance: |
|
|
|
|
|
|
|
down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples] |
|
mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample]) |
|
|
|
|
|
noise_pred = self.unet( |
|
latent_model_input, |
|
t, |
|
encoder_hidden_states=encoder_hidden_states, |
|
timestep_cond=timestep_cond, |
|
cross_attention_kwargs=self.cross_attention_kwargs, |
|
down_block_additional_residuals=down_block_res_samples, |
|
mid_block_additional_residual=mid_block_res_sample, |
|
added_cond_kwargs=added_cond_kwargs, |
|
return_dict=False, |
|
)[0] |
|
|
|
|
|
if self.do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] |
|
|
|
if callback_on_step_end is not None: |
|
callback_kwargs = {} |
|
for k in callback_on_step_end_tensor_inputs: |
|
callback_kwargs[k] = locals()[k] |
|
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) |
|
|
|
latents = callback_outputs.pop("latents", latents) |
|
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) |
|
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
if callback is not None and i % callback_steps == 0: |
|
step_idx = i // getattr(self.scheduler, "order", 1) |
|
callback(step_idx, t, latents) |
|
|
|
if not output_type == "latent": |
|
|
|
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast |
|
if needs_upcasting: |
|
self.upcast_vae() |
|
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) |
|
|
|
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] |
|
|
|
|
|
if needs_upcasting: |
|
self.vae.to(dtype=torch.float16) |
|
else: |
|
image = latents |
|
|
|
if not output_type == "latent": |
|
|
|
if self.watermark is not None: |
|
image = self.watermark.apply_watermark(image) |
|
|
|
image = self.image_processor.postprocess(image, output_type=output_type) |
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
if not return_dict: |
|
return (image,) |
|
|
|
return StableDiffusionXLPipelineOutput(images=image) |