|
import os |
|
import cv2 |
|
import math |
|
import spaces |
|
import torch |
|
import random |
|
import numpy as np |
|
|
|
import PIL |
|
from PIL import Image |
|
|
|
import diffusers |
|
from diffusers.utils import load_image |
|
from diffusers.models import ControlNetModel |
|
|
|
import insightface |
|
from insightface.app import FaceAnalysis |
|
|
|
from style_template import styles |
|
from pipeline_stable_diffusion_xl_instantid import StableDiffusionXLInstantIDPipeline |
|
|
|
import gradio as gr |
|
|
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
STYLE_NAMES = list(styles.keys()) |
|
DEFAULT_STYLE_NAME = "Watercolor" |
|
|
|
|
|
from huggingface_hub import hf_hub_download |
|
hf_hub_download(repo_id="InstantX/InstantID", filename="ControlNetModel/config.json", local_dir="./checkpoints") |
|
hf_hub_download(repo_id="InstantX/InstantID", filename="ControlNetModel/diffusion_pytorch_model.safetensors", local_dir="./checkpoints") |
|
hf_hub_download(repo_id="InstantX/InstantID", filename="ip-adapter.bin", local_dir="./checkpoints") |
|
|
|
|
|
app = FaceAnalysis(name='antelopev2', root='./', providers=['CPUExecutionProvider']) |
|
app.prepare(ctx_id=0, det_size=(640, 640)) |
|
|
|
|
|
face_adapter = f'./checkpoints/ip-adapter.bin' |
|
controlnet_path = f'./checkpoints/ControlNetModel' |
|
|
|
|
|
controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16) |
|
|
|
base_model_path = 'wangqixun/YamerMIX_v8' |
|
|
|
pipe = StableDiffusionXLInstantIDPipeline.from_pretrained( |
|
base_model_path, |
|
controlnet=controlnet, |
|
torch_dtype=torch.float16, |
|
safety_checker=None, |
|
feature_extractor=None, |
|
) |
|
pipe.cuda() |
|
pipe.load_ip_adapter_instantid(face_adapter) |
|
pipe.image_proj_model.to('cuda') |
|
pipe.unet.to('cuda') |
|
|
|
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: |
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
return seed |
|
|
|
def swap_to_gallery(images): |
|
return gr.update(value=images, visible=True), gr.update(visible=True), gr.update(visible=False) |
|
|
|
def upload_example_to_gallery(images, prompt, style, negative_prompt): |
|
return gr.update(value=images, visible=True), gr.update(visible=True), gr.update(visible=False) |
|
|
|
def remove_back_to_files(): |
|
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True) |
|
|
|
def remove_tips(): |
|
return gr.update(visible=False) |
|
|
|
def get_example(): |
|
case = [ |
|
[ |
|
['./examples/yann-lecun_resize.jpg'], |
|
"a man", |
|
"Snow", |
|
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green", |
|
], |
|
[ |
|
['./examples/musk_resize.jpeg'], |
|
"a man", |
|
"Mars", |
|
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green", |
|
], |
|
[ |
|
['./examples/sam_resize.png'], |
|
"a man", |
|
"Jungle", |
|
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, gree", |
|
], |
|
[ |
|
['./examples/schmidhuber_resize.png'], |
|
"a man", |
|
"Neon", |
|
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green", |
|
], |
|
[ |
|
['./examples/kaifu_resize.png'], |
|
"a man", |
|
"Vibrant Color", |
|
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green", |
|
], |
|
] |
|
return case |
|
|
|
def convert_from_cv2_to_image(img: np.ndarray) -> Image: |
|
return Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) |
|
|
|
def convert_from_image_to_cv2(img: Image) -> np.ndarray: |
|
return cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) |
|
|
|
def draw_kps(image_pil, kps, color_list=[(255,0,0), (0,255,0), (0,0,255), (255,255,0), (255,0,255)]): |
|
stickwidth = 4 |
|
limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]]) |
|
kps = np.array(kps) |
|
|
|
w, h = image_pil.size |
|
out_img = np.zeros([h, w, 3]) |
|
|
|
for i in range(len(limbSeq)): |
|
index = limbSeq[i] |
|
color = color_list[index[0]] |
|
|
|
x = kps[index][:, 0] |
|
y = kps[index][:, 1] |
|
length = ((x[0] - x[1]) ** 2 + (y[0] - y[1]) ** 2) ** 0.5 |
|
angle = math.degrees(math.atan2(y[0] - y[1], x[0] - x[1])) |
|
polygon = cv2.ellipse2Poly((int(np.mean(x)), int(np.mean(y))), (int(length / 2), stickwidth), int(angle), 0, 360, 1) |
|
out_img = cv2.fillConvexPoly(out_img.copy(), polygon, color) |
|
out_img = (out_img * 0.6).astype(np.uint8) |
|
|
|
for idx_kp, kp in enumerate(kps): |
|
color = color_list[idx_kp] |
|
x, y = kp |
|
out_img = cv2.circle(out_img.copy(), (int(x), int(y)), 10, color, -1) |
|
|
|
out_img_pil = Image.fromarray(out_img.astype(np.uint8)) |
|
return out_img_pil |
|
|
|
def resize_img(input_image, max_side=1280, min_side=1024, size=None, |
|
pad_to_max_side=False, mode=PIL.Image.BILINEAR, base_pixel_number=64): |
|
|
|
w, h = input_image.size |
|
if size is not None: |
|
w_resize_new, h_resize_new = size |
|
else: |
|
ratio = min_side / min(h, w) |
|
w, h = round(ratio*w), round(ratio*h) |
|
ratio = max_side / max(h, w) |
|
input_image = input_image.resize([round(ratio*w), round(ratio*h)], mode) |
|
w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number |
|
h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number |
|
input_image = input_image.resize([w_resize_new, h_resize_new], mode) |
|
|
|
if pad_to_max_side: |
|
res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255 |
|
offset_x = (max_side - w_resize_new) // 2 |
|
offset_y = (max_side - h_resize_new) // 2 |
|
res[offset_y:offset_y+h_resize_new, offset_x:offset_x+w_resize_new] = np.array(input_image) |
|
input_image = Image.fromarray(res) |
|
return input_image |
|
|
|
def apply_style(style_name: str, positive: str, negative: str = "") -> tuple[str, str]: |
|
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME]) |
|
return p.replace("{prompt}", positive), n + ' ' + negative |
|
|
|
@spaces.GPU |
|
def generate_image(face_image, pose_image, prompt, negative_prompt, style_name, enhance_face_region, num_steps, identitynet_strength_ratio, adapter_strength_ratio, guidance_scale, seed, progress=gr.Progress(track_tqdm=True)): |
|
|
|
if face_image is None: |
|
raise gr.Error(f"Cannot find any input face image! Please upload the face image") |
|
|
|
if prompt is None: |
|
prompt = "a person" |
|
|
|
|
|
prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt) |
|
|
|
face_image = load_image(face_image[0]) |
|
face_image = resize_img(face_image) |
|
face_image_cv2 = convert_from_image_to_cv2(face_image) |
|
height, width, _ = face_image_cv2.shape |
|
|
|
|
|
face_info = app.get(face_image_cv2) |
|
|
|
if len(face_info) == 0: |
|
raise gr.Error(f"Cannot find any face in the image! Please upload another person image") |
|
|
|
face_info = face_info[-1] |
|
face_emb = face_info['embedding'] |
|
face_kps = draw_kps(convert_from_cv2_to_image(face_image_cv2), face_info['kps']) |
|
|
|
if pose_image is not None: |
|
pose_image = load_image(pose_image[0]) |
|
pose_image = resize_img(pose_image) |
|
pose_image_cv2 = convert_from_image_to_cv2(pose_image) |
|
|
|
face_info = app.get(pose_image_cv2) |
|
|
|
if len(face_info) == 0: |
|
raise gr.Error(f"Cannot find any face in the reference image! Please upload another person image") |
|
|
|
face_info = face_info[-1] |
|
face_kps = draw_kps(pose_image, face_info['kps']) |
|
|
|
width, height = face_kps.size |
|
|
|
if enhance_face_region: |
|
control_mask = np.zeros([height, width, 3]) |
|
x1, y1, x2, y2 = face_info['bbox'] |
|
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2) |
|
control_mask[y1:y2, x1:x2] = 255 |
|
control_mask = Image.fromarray(control_mask.astype(np.uint8)) |
|
else: |
|
control_mask = None |
|
|
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
|
|
print("Start inference...") |
|
print(f"[Debug] Prompt: {prompt}, \n[Debug] Neg Prompt: {negative_prompt}") |
|
|
|
pipe.set_ip_adapter_scale(adapter_strength_ratio) |
|
images = pipe( |
|
prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
image_embeds=face_emb, |
|
image=face_kps, |
|
control_mask=control_mask, |
|
controlnet_conditioning_scale=float(identitynet_strength_ratio), |
|
num_inference_steps=num_steps, |
|
guidance_scale=guidance_scale, |
|
height=height, |
|
width=width, |
|
generator=generator |
|
).images |
|
|
|
return images, gr.update(visible=True) |
|
|
|
|
|
title = r""" |
|
<h1 align="center">InstantID: Zero-shot Identity-Preserving Generation in Seconds</h1> |
|
""" |
|
|
|
description = r""" |
|
<b>Official π€ Gradio demo</b> for <a href='https://github.com/InstantID/InstantID' target='_blank'><b>InstantID: Zero-shot Identity-Preserving Generation in Seconds</b></a>.<br> |
|
|
|
How to use:<br> |
|
1. Upload a person image. For multiple person images, we will only detect the biggest face. Make sure face is not too small and not significantly blocked or blurred. |
|
2. (Optionally) upload another person image as reference pose. If not uploaded, we will use the first person image to extract landmarks. If you use a cropped face at step1, it is recommeneded to upload it to extract a new pose. |
|
3. Enter a text prompt as done in normal text-to-image models. |
|
4. Click the <b>Submit</b> button to start customizing. |
|
5. Share your customizd photo with your friends, enjoyπ! |
|
""" |
|
|
|
article = r""" |
|
--- |
|
π **Citation** |
|
<br> |
|
If our work is helpful for your research or applications, please cite us via: |
|
```bibtex |
|
@article{wang2024instantid, |
|
title={InstantID: Zero-shot Identity-Preserving Generation in Seconds}, |
|
author={Wang, Qixun and Bai, Xu and Wang, Haofan and Qin, Zekui and Chen, Anthony}, |
|
journal={arXiv preprint arXiv:2401.07519}, |
|
year={2024} |
|
} |
|
``` |
|
π§ **Contact** |
|
<br> |
|
If you have any questions, please feel free to open an issue or directly reach us out at <b>[email protected]</b>. |
|
""" |
|
|
|
tips = r""" |
|
### Usage tips of InstantID |
|
1. If you're unsatisfied with the similarity, increase the weight of controlnet_conditioning_scale (IdentityNet) and ip_adapter_scale (Adapter). |
|
2. If the generated image is over-saturated, decrease the ip_adapter_scale. If not work, decrease controlnet_conditioning_scale. |
|
3. If text control is not as expected, decrease ip_adapter_scale. |
|
4. Find a good base model always makes a difference. |
|
""" |
|
|
|
css = ''' |
|
.gradio-container {width: 85% !important} |
|
''' |
|
with gr.Blocks(css=css) as demo: |
|
|
|
|
|
gr.Markdown(title) |
|
gr.Markdown(description) |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
|
|
|
|
face_files = gr.Files( |
|
label="Upload a photo of your face", |
|
file_types=["image"] |
|
) |
|
uploaded_faces = gr.Gallery(label="Your images", visible=False, columns=1, rows=1, height=512) |
|
with gr.Column(visible=False) as clear_button_face: |
|
remove_and_reupload_faces = gr.ClearButton(value="Remove and upload new ones", components=face_files, size="sm") |
|
|
|
|
|
pose_files = gr.Files( |
|
label="Upload a reference pose image (optional)", |
|
file_types=["image"] |
|
) |
|
uploaded_poses = gr.Gallery(label="Your images", visible=False, columns=1, rows=1, height=512) |
|
with gr.Column(visible=False) as clear_button_pose: |
|
remove_and_reupload_poses = gr.ClearButton(value="Remove and upload new ones", components=pose_files, size="sm") |
|
|
|
|
|
prompt = gr.Textbox(label="Prompt", |
|
info="Give simple prompt is enough to achieve good face fedility", |
|
placeholder="A photo of a person", |
|
value="") |
|
|
|
submit = gr.Button("Submit", variant="primary") |
|
|
|
style = gr.Dropdown(label="Style template", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME) |
|
|
|
|
|
identitynet_strength_ratio = gr.Slider( |
|
label="IdentityNet strength (for fedility)", |
|
minimum=0, |
|
maximum=1.5, |
|
step=0.05, |
|
value=0.80, |
|
) |
|
adapter_strength_ratio = gr.Slider( |
|
label="Image adapter strength (for detail)", |
|
minimum=0, |
|
maximum=1.5, |
|
step=0.05, |
|
value=0.80, |
|
) |
|
|
|
with gr.Accordion(open=False, label="Advanced Options"): |
|
negative_prompt = gr.Textbox( |
|
label="Negative Prompt", |
|
placeholder="low quality", |
|
value="(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green", |
|
) |
|
num_steps = gr.Slider( |
|
label="Number of sample steps", |
|
minimum=20, |
|
maximum=100, |
|
step=1, |
|
value=30, |
|
) |
|
guidance_scale = gr.Slider( |
|
label="Guidance scale", |
|
minimum=0.1, |
|
maximum=10.0, |
|
step=0.1, |
|
value=5, |
|
) |
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=42, |
|
) |
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
enhance_face_region = gr.Checkbox(label="Enhance non-face region", value=True) |
|
|
|
with gr.Column(): |
|
gallery = gr.Gallery(label="Generated Images") |
|
usage_tips = gr.Markdown(label="Usage tips of InstantID", value=tips ,visible=False) |
|
|
|
face_files.upload(fn=swap_to_gallery, inputs=face_files, outputs=[uploaded_faces, clear_button_face, face_files]) |
|
pose_files.upload(fn=swap_to_gallery, inputs=pose_files, outputs=[uploaded_poses, clear_button_pose, pose_files]) |
|
|
|
remove_and_reupload_faces.click(fn=remove_back_to_files, outputs=[uploaded_faces, clear_button_face, face_files]) |
|
remove_and_reupload_poses.click(fn=remove_back_to_files, outputs=[uploaded_poses, clear_button_pose, pose_files]) |
|
|
|
submit.click( |
|
fn=remove_tips, |
|
outputs=usage_tips, |
|
).then( |
|
fn=randomize_seed_fn, |
|
inputs=[seed, randomize_seed], |
|
outputs=seed, |
|
queue=False, |
|
api_name=False, |
|
).then( |
|
fn=generate_image, |
|
inputs=[face_files, pose_files, prompt, negative_prompt, style, enhance_face_region, num_steps, identitynet_strength_ratio, adapter_strength_ratio, guidance_scale, seed], |
|
outputs=[gallery, usage_tips] |
|
) |
|
|
|
gr.Examples( |
|
examples=get_example(), |
|
inputs=[face_files, prompt, style, negative_prompt], |
|
run_on_click=True, |
|
fn=upload_example_to_gallery, |
|
outputs=[uploaded_faces, clear_button_face, face_files], |
|
cache_examples=True |
|
) |
|
|
|
gr.Markdown(article) |
|
|
|
demo.queue(api_open=False) |
|
demo.launch() |