Spaces:
Running
on
Zero
Running
on
Zero
Upload 4 files
Browse files- README.md +6 -6
- app.py +113 -0
- pre-requirements.txt +1 -0
- requirements.txt +5 -0
README.md
CHANGED
@@ -1,12 +1,12 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
-
|
|
|
1 |
---
|
2 |
+
title: FluxiAI ChatbotVision
|
3 |
+
emoji: 💬
|
4 |
+
colorFrom: yellow
|
5 |
+
colorTo: purple
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.36.1
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
+
An example chatbot using [Gradio](https://gradio.app), [`huggingface_hub`](https://huggingface.co/docs/huggingface_hub/v0.22.2/en/index), and the [Hugging Face Inference API](https://huggingface.co/docs/api-inference/index).
|
app.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
import gradio as gr
|
3 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
4 |
+
from huggingface_hub import InferenceClient
|
5 |
+
import io
|
6 |
+
from PIL import Image
|
7 |
+
import torch
|
8 |
+
import numpy as np
|
9 |
+
import subprocess
|
10 |
+
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
11 |
+
|
12 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
13 |
+
model_id = 'J-LAB/Florence-vl3'
|
14 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True).to(device).eval()
|
15 |
+
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
|
16 |
+
|
17 |
+
@spaces.GPU
|
18 |
+
def run_example(task_prompt, image):
|
19 |
+
inputs = processor(text=task_prompt, images=image, return_tensors="pt", padding=True).to(device)
|
20 |
+
generated_ids = model.generate(
|
21 |
+
input_ids=inputs["input_ids"],
|
22 |
+
pixel_values=inputs["pixel_values"],
|
23 |
+
max_new_tokens=1024,
|
24 |
+
early_stopping=False,
|
25 |
+
do_sample=False,
|
26 |
+
num_beams=3,
|
27 |
+
)
|
28 |
+
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
29 |
+
parsed_answer = processor.post_process_generation(
|
30 |
+
generated_text,
|
31 |
+
task=task_prompt,
|
32 |
+
image_size=(image.width, image.height)
|
33 |
+
)
|
34 |
+
return parsed_answer
|
35 |
+
|
36 |
+
def process_image(image, task_prompt):
|
37 |
+
if isinstance(image, str): # Check if the image path is provided
|
38 |
+
image = Image.open(image)
|
39 |
+
elif isinstance(image, np.ndarray):
|
40 |
+
image = Image.fromarray(image) # Convert NumPy array to PIL Image
|
41 |
+
|
42 |
+
if task_prompt == 'Product Caption':
|
43 |
+
task_prompt = '<MORE_DETAILED_CAPTION>'
|
44 |
+
elif task_prompt == 'OCR':
|
45 |
+
task_prompt = '<OCR>'
|
46 |
+
|
47 |
+
results = run_example(task_prompt, image)
|
48 |
+
|
49 |
+
# Remove the key and get the text value
|
50 |
+
if results and task_prompt in results:
|
51 |
+
output_text = results[task_prompt]
|
52 |
+
else:
|
53 |
+
output_text = ""
|
54 |
+
|
55 |
+
return output_text
|
56 |
+
|
57 |
+
# Inicializando o cliente
|
58 |
+
client = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")
|
59 |
+
|
60 |
+
# Função de resposta para o chatbot
|
61 |
+
def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, image):
|
62 |
+
image_result = ""
|
63 |
+
if image is not None:
|
64 |
+
try:
|
65 |
+
image_result_caption = process_image(image, 'Product Caption')
|
66 |
+
image_result_ocr = process_image(image, 'OCR')
|
67 |
+
image_result = image_result_caption + " " + image_result_ocr # Concatenar os resultados
|
68 |
+
except Exception as e:
|
69 |
+
image_result = f"An error occurred with image processing: {str(e)}"
|
70 |
+
|
71 |
+
# Construindo a mensagem completa com o resultado da imagem
|
72 |
+
full_message = message
|
73 |
+
if image_result:
|
74 |
+
full_message = f"\n<image>{image_result}</image>\n\n{message}"
|
75 |
+
|
76 |
+
# Adicionando mensagens ao histórico
|
77 |
+
messages = [{"role": "system", "content": f'{system_message} a descrição das imagens enviadas pelo usuário ficam dentro da tag <image> </image>'}]
|
78 |
+
for user, assistant in history:
|
79 |
+
if user:
|
80 |
+
messages.append({"role": "user", "content": user})
|
81 |
+
if assistant:
|
82 |
+
messages.append({"role": "assistant", "content": assistant})
|
83 |
+
|
84 |
+
messages.append({"role": "user", "content": full_message})
|
85 |
+
|
86 |
+
# Gerando a resposta
|
87 |
+
response = ""
|
88 |
+
try:
|
89 |
+
for msg in client.chat_completion(messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p):
|
90 |
+
token = msg.choices[0].delta.content
|
91 |
+
response += token
|
92 |
+
except Exception as e:
|
93 |
+
response = f"An error occurred: {str(e)}" # Retornando apenas o texto da mensagem de erro
|
94 |
+
|
95 |
+
# Atualizando o histórico, mas sem mostrar image_result no chat
|
96 |
+
history.append((message, response))
|
97 |
+
return history, gr.update(value=None), gr.update(value="")
|
98 |
+
|
99 |
+
# Configurando a interface do Gradio
|
100 |
+
with gr.Blocks() as demo:
|
101 |
+
chatbot = gr.Chatbot()
|
102 |
+
chat_input = gr.Textbox(placeholder="Enter message...", show_label=False)
|
103 |
+
image_input = gr.Image(type="filepath", label="Upload an image")
|
104 |
+
submit_btn = gr.Button("Send Message")
|
105 |
+
system_message = gr.Textbox(value="Você é um chatbot útil que sempre responde em português", label="System message")
|
106 |
+
max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens")
|
107 |
+
temperature = gr.Slider(minimum=0.1, maximum=1.5, value=0.7, step=0.1, label="Temperature")
|
108 |
+
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")
|
109 |
+
|
110 |
+
submit_btn.click(respond, inputs=[chat_input, chatbot, system_message, max_tokens, temperature, top_p, image_input], outputs=[chatbot, image_input, chat_input])
|
111 |
+
|
112 |
+
if __name__ == "__main__":
|
113 |
+
demo.launch(debug=True, quiet=True)
|
pre-requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
pip>=23.0.0
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
huggingface_hub
|
2 |
+
spaces
|
3 |
+
transformers
|
4 |
+
timm
|
5 |
+
openai
|