IvaElen commited on
Commit
dc82480
·
1 Parent(s): 05f8cd8

Update pages/GPT.py

Browse files
Files changed (1) hide show
  1. pages/GPT.py +5 -6
pages/GPT.py CHANGED
@@ -5,7 +5,7 @@ import transformers
5
  import random
6
  import textwrap
7
 
8
- @st.cache_data
9
  def load_model():
10
  model_finetuned = transformers.AutoModelWithLMHead.from_pretrained(
11
  'tinkoff-ai/ruDialoGPT-small',
@@ -33,7 +33,6 @@ def predict_sentiment(model, prompt, temp, num_generate):
33
  no_repeat_ngram_size=3,
34
  num_return_sequences=num_generate,
35
  ).cpu().numpy()
36
- print(result)
37
  return result
38
 
39
  st.title('Text generation with dreambook')
@@ -41,20 +40,20 @@ st.title('Text generation with dreambook')
41
  model, tokenizer = load_model()
42
 
43
  text_input = st.text_input("Enter some text about movie")
44
- print(text_input)
45
  max_len = st.slider('Length of sequence', 0, 500, 250)
46
- print(max_len)
47
  temp = st.slider('Temperature', 1, 30, 1)
48
- print(temp)
49
 
50
  if st.button('Generate a random number of sequences'):
51
  num_generate = random.randint(1,5)
52
  st.write(f'Number of sequences: {num_generate}')
53
  else:
54
  num_generate = st.text_input("Enter number of sequences")
55
-
56
  if st.button('Generate') and num_generate and text_input:
 
57
  prompt = preprocess_text(text_input, tokenizer)
 
58
  result = predict_sentiment(model, prompt, temp, int(num_generate))
 
59
  for i in result:
60
  st.write(textwrap.fill(tokenizer.decode(i), max_len))
 
5
  import random
6
  import textwrap
7
 
8
+ # @st.cache_data
9
  def load_model():
10
  model_finetuned = transformers.AutoModelWithLMHead.from_pretrained(
11
  'tinkoff-ai/ruDialoGPT-small',
 
33
  no_repeat_ngram_size=3,
34
  num_return_sequences=num_generate,
35
  ).cpu().numpy()
 
36
  return result
37
 
38
  st.title('Text generation with dreambook')
 
40
  model, tokenizer = load_model()
41
 
42
  text_input = st.text_input("Enter some text about movie")
 
43
  max_len = st.slider('Length of sequence', 0, 500, 250)
 
44
  temp = st.slider('Temperature', 1, 30, 1)
 
45
 
46
  if st.button('Generate a random number of sequences'):
47
  num_generate = random.randint(1,5)
48
  st.write(f'Number of sequences: {num_generate}')
49
  else:
50
  num_generate = st.text_input("Enter number of sequences")
51
+
52
  if st.button('Generate') and num_generate and text_input:
53
+ st.write('Hello')
54
  prompt = preprocess_text(text_input, tokenizer)
55
+ st.write('Hello')
56
  result = predict_sentiment(model, prompt, temp, int(num_generate))
57
+ st.write('Hello')
58
  for i in result:
59
  st.write(textwrap.fill(tokenizer.decode(i), max_len))