IvaElen commited on
Commit
2722240
·
1 Parent(s): d4f792b

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -46
app.py DELETED
@@ -1,46 +0,0 @@
1
- import streamlit as st
2
- import torch
3
- import numpy as np
4
- import transformers
5
- import pickle
6
-
7
- def load_model():
8
- model_finetuned = transformers.AutoModel.from_pretrained(
9
- "nghuyong/ernie-2.0-base-en",
10
- output_attentions = False,
11
- output_hidden_states = False
12
- )
13
- model_finetuned.load_state_dict(torch.load('ErnieModel_imdb.pt', map_location=torch.device('cpu')))
14
- tokenizer = transformers.AutoTokenizer.from_pretrained("nghuyong/ernie-2.0-base-en")
15
- return model_finetuned, tokenizer
16
-
17
- def preprocess_text(text_input, max_len, tokenizer):
18
- input_tokens = tokenizer(
19
- text_input,
20
- return_tensors='pt',
21
- padding=True,
22
- max_length=max_len,
23
- truncation = True
24
- )
25
- return input_tokens
26
-
27
- def predict_sentiment(model, input_tokens):
28
- id2label = {0: "NEGATIVE", 1: "POSITIVE"}
29
- output = model(**input_tokens).pooler_output.detach().numpy()
30
- with open('LogReg_imdb_Ernie.pkl', 'rb') as file:
31
- cls = pickle.load(file)
32
- result = id2label[int(cls.predict(output))]
33
- return result
34
-
35
- st.title('Text sentiment analysis by ErnieModel')
36
-
37
- max_len = st.slider('Maximum word length', 0, 500, 250)
38
-
39
- text_input = st.text_input("Enter some text about movie")
40
- model, tokenizer = load_model()
41
-
42
- if text_input:
43
- input_tokens = preprocess_text(text_input, max_len, tokenizer)
44
- output = predict_sentiment(model, input_tokens)
45
- st.write(output)
46
-