nlp_proj / app.py
IvaElen's picture
Update app.py
cecc930
raw
history blame
6 kB
import streamlit as st
import torch
import torch.nn as nn
import pandas as pd
import numpy as np
import pickle
from nltk.tokenize import RegexpTokenizer
from nltk.corpus import stopwords
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import LogisticRegression
import re
import string
from nltk.stem import WordNetLemmatizer
import time
import transformers
import json
import nltk
nltk.download('stopwords')
nltk.download('wordnet')
nltk.download('punkt')
nltk.download('averaged_perceptron_tagger')
from biLSTM1 import biLSTM
from lstm_preprocessing import (
data_preprocessing,
get_words_by_freq,
padding,
preprocess_single_string
)
# 1-Lesha, 2-Lena, 3-Gal
# +++++++++++
# 1 -Lesha
# Load the saved model
with open('logistic_regression_model.pkl', 'rb') as file:
loaded_model_1 = pickle.load(file)
with open('tfidf_vectorizer.pkl', 'rb') as file:
vectorizer_1 = pickle.load(file)
# Load the stop words
stop_words = stopwords.words('english')
# Create a tokenizer
tokenizer = RegexpTokenizer(r'\w+')
def data_preprocessing(text: str) -> str:
"""preprocessing string: lowercase, removing html-tags, punctuation and stopwords
Args:
text (str): input string for preprocessing
Returns:
str: preprocessed string
"""
text = text.lower()
text = re.sub('<.*?>', '', text) # html tags
text = ''.join([c for c in text if c not in string.punctuation])# Remove punctuation
lemmatizer = WordNetLemmatizer()
tokens = tokenizer.tokenize(text)
tokens = [lemmatizer.lemmatize(word) for word in tokens if not word.isdigit() and word not in stop_words]
return ' '.join(tokens)
# ++++
# Lena
def load_model_l():
model_finetuned = transformers.AutoModel.from_pretrained(
"nghuyong/ernie-2.0-base-en",
output_attentions = False,
output_hidden_states = False
)
model_finetuned.load_state_dict(torch.load('ErnieModel_imdb.pt', map_location=torch.device('cpu')))
tokenizer = transformers.AutoTokenizer.from_pretrained("nghuyong/ernie-2.0-base-en")
return model_finetuned, tokenizer
def preprocess_text(text_input, max_len, tokenizer):
input_tokens = tokenizer(
text_input,
return_tensors='pt',
padding=True,
max_length=max_len,
truncation = True
)
return input_tokens
def predict_sentiment(model, input_tokens):
id2label = {0: "negative", 1: "positive"}
output = model(**input_tokens).pooler_output.detach().numpy()
with open('LogReg_imdb_Ernie.pkl', 'rb') as file:
cls = pickle.load(file)
result = id2label[int(cls.predict(output))]
return result
# ++++
# Gala
with open('vocab_to_int.json', 'r') as fp:
vocab_to_int = json.load(fp)
VOCAB_SIZE = len(vocab_to_int)+1
EMBEDDING_DIM = 32
HIDDEN_DIM = 64
N_LAYERS = 3
SEQ_LEN = 128
def load_model_g():
model = biLSTM(
vocab_size=VOCAB_SIZE,
embedding_dim=EMBEDDING_DIM,
hidden_dim=HIDDEN_DIM,
n_layers=N_LAYERS
)
model.load_state_dict(torch.load('biLSTM_model_do_05_lr001_best.pt', map_location=torch.device('cpu')))
return model
device = 'cuda' if torch.cuda.is_available() else 'cpu'
def predict_sentence(text: str, model: nn.Module) -> str:
id2label = {0: "negative", 1: "positive"}
output = model.to(device)(preprocess_single_string(text, SEQ_LEN, vocab_to_int).unsqueeze(0).to(device))
pred = int(output.round().item())
result = id2label[pred]
return result
# ++++++
# Lesha
# Create the Streamlit app
def main():
st.title('Sentiment Analysis App')
st.header('Classic ML, ErnieModel, bidirectional LSTM')
user_input = st.text_area('Please enter your review:')
st.write(user_input)
submit = st.button("Predict!")
col1, col2,col3 = st.columns(3)
if user_input is not None and submit:
with col1:
# Preprocess the user input
preprocessed_input_1 = data_preprocessing(user_input)
# Vectorize the preprocessed input
input_vector = vectorizer_1.transform([preprocessed_input_1])
start_time = time.time()
proba_1 = loaded_model_1.predict_proba(input_vector)[:, 1]
# Predict the sentiment using the loaded model
#prediction = loaded_model.predict(input_vector)[0]
prediction_1 = round(proba_1[0])
end_time = time.time()
# Display the predicted sentiment
if prediction_1 == 0:
st.write('The sentiment of your review is negative.')
st.write('Predicted probability:', (1 - round(proba_1[0], 2))*100, '%')
else:
st.write('The sentiment of your review is positive.')
st.write('Predicted probability:', (round(proba_1[0], 2))*100, '%')
st.write('Processing time:', round(end_time - start_time, 4), 'seconds')
# Lena
if user_input is not None and submit:
with col2:
model2, tokenizer = load_model_l()
start_time = time.time()
input_tokens = preprocess_text(user_input, 500, tokenizer)
output = predict_sentiment(model2, input_tokens)
end_time = time.time()
st.write('The sentiment of your review is', output)
st.write('Processing time:', round(end_time - start_time, 4), 'seconds')
# Gala
if user_input is not None and submit:
with col3:
model3 = load_model_g()
start_time = time.time()
output = predict_sentence(user_input,model3)
end_time = time.time()
st.write('The sentiment of your review is', output)
st.write('Processing time:', round(end_time - start_time, 4), 'seconds')
if __name__ == '__main__':
main()