nlp_proj / model /model.py
Maslov-Artem
Add 3 classifiers
cb2adb5
raw
history blame
3.95 kB
from typing import Tuple
import torch
import torch.nn as nn
HIDDEN_SIZE = 32
VOCAB_SIZE =196906
EMBEDDING_DIM = 64 # embedding_dim
SEQ_LEN = 100
BATCH_SIZE = 64
class BahdanauAttention(nn.Module):
def __init__(self, hidden_size: int = HIDDEN_SIZE) -> None:
super().__init__()
self.hidden_size = hidden_size
self.W_q = nn.Linear(hidden_size, hidden_size)
self.W_k = nn.Linear(hidden_size, hidden_size)
self.W_v = nn.Linear(hidden_size, 1)
self.tanh = nn.Tanh()
def forward(
self,
lstm_outputs: torch.Tensor, # BATCH_SIZE x SEQ_LEN x HIDDEN_SIZE
final_hidden: torch.Tensor, # BATCH_SIZE x HIDDEN_SIZE
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Bahdanau Attention module
Args:
keys (torch.Tensor): lstm hidden states (BATCH_SIZE, SEQ_LEN, HIDDEN_SIZE)
query (torch.Tensor): lstm final hidden state (BATCH_SIZE, HIDDEN_SIZE)
Returns:
Tuple[torch.Tensor]:
context_matrix (BATCH_SIZE, HIDDEN_SIZE)
attention scores (BATCH_SIZE, SEQ_LEN)
"""
# input:
# keys – lstm hidden states (BATCH_SIZE, SEQ_LEN, HIDDEN_SIZE)
# query - lstm final hidden state (BATCH_SIZE, HIDDEN_SIZE)
keys = self.W_k(lstm_outputs)
# print(f'After linear keys: {keys.shape}')
query = self.W_q(final_hidden)
# print(f"After linear query: {query.shape}")
# print(f"query.unsqueeze(1) {query.unsqueeze(1).shape}")
sum = query.unsqueeze(1) + keys
# print(f"After sum: {sum.shape}")
tanhed = self.tanh(sum)
# print(f"After tanhed: {tanhed.shape}")
vector = self.W_v(tanhed).squeeze(-1)
# print(f"After linear vector: {vector.shape}")
att_weights = torch.softmax(vector, -1)
# print(f"After softmax att_weights: {att_weights.shape}")
context = torch.bmm(att_weights.unsqueeze(1), keys).squeeze()
# print(f"After bmm context: {context.shape}")
return context, att_weights
# att_weights = self.linear(lstm_outputs)
# # print(f'After linear: {att_weights.shape, final_hidden.unsqueeze(2).shape}')
# att_weights = self.linear(lstm_outputs)
# # print(f'After linear: {att_weights.shape, final_hidden.unsqueeze(2).shape}')
# att_weights = torch.bmm(att_weights, final_hidden.unsqueeze(2))
# # print(f'After bmm: {att_weights.shape}')
# att_weights = F.softmax(att_weights.squeeze(2), dim=1)
# # print(f'After softmax: {att_weights.shape}')
# cntxt = torch.bmm(lstm_outputs.transpose(1, 2), att_weights.unsqueeze(2))
# # print(f'Context: {cntxt.shape}')
# concatted = torch.cat((cntxt, final_hidden.unsqueeze(2)), dim=1)
# # print(f'Concatted: {concatted.shape}')
# att_hidden = self.tanh(self.align(concatted.squeeze(-1)))
# # print(f'Att Hidden: {att_hidden.shape}')
# return att_hidden, att_weights
# Test on random numbers
BahdanauAttention()(torch.randn(BATCH_SIZE, SEQ_LEN, HIDDEN_SIZE), torch.randn(BATCH_SIZE, HIDDEN_SIZE))[1].shape
class LSTMConcatAttentionEmbed(nn.Module):
def __init__(self) -> None:
super().__init__()
self.embedding = nn.Embedding(VOCAB_SIZE, EMBEDDING_DIM)
# self.embedding = embedding_layer
self.lstm = nn.LSTM(EMBEDDING_DIM, HIDDEN_SIZE, batch_first=True)
self.attn = BahdanauAttention(HIDDEN_SIZE)
self.clf = nn.Sequential(
nn.Linear(HIDDEN_SIZE, 128),
nn.Dropout(),
nn.Tanh(),
nn.Linear(128, 1)
)
def forward(self, x):
embeddings = self.embedding(x)
outputs, (h_n, _) = self.lstm(embeddings)
att_hidden, att_weights = self.attn(outputs, h_n.squeeze(0))
out = self.clf(att_hidden)
return out, att_weights