File size: 3,708 Bytes
cb2adb5
eb91edf
 
cb2adb5
eb91edf
cb2adb5
 
 
eb91edf
c747562
 
cb2adb5
 
 
eb91edf
 
c747562
 
 
 
eb91edf
c747562
 
 
eb91edf
cb2adb5
c747562
cb2adb5
 
c747562
 
 
 
cb2adb5
c747562
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb2adb5
 
 
 
 
 
 
 
 
 
eb91edf
 
 
 
cb2adb5
eb91edf
 
 
 
c747562
cb2adb5
eb91edf
cb2adb5
eb91edf
 
 
 
 
cb2adb5
 
c747562
cb2adb5
 
 
 
 
 
 
 
 
eb91edf
 
 
 
 
 
 
 
 
cb2adb5
eb91edf
cb2adb5
 
 
eb91edf
cb2adb5
eb91edf
 
 
 
 
 
 
cb2adb5
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import json
import pickle

import pandas as pd
import streamlit as st
import torch
import torch.nn as nn
import transformers

from model.funcs import (create_model_and_tokenizer, execution_time,
                         load_model, predict_sentiment)
from model.model import LSTMConcatAttentionEmbed
from preprocessing.preprocessing import data_preprocessing
from preprocessing.rnn_preprocessing import preprocess_single_string


@st.cache_resource
def load_logreg():
    with open("vectorizer.pkl", "rb") as f:
        logreg_vectorizer = pickle.load(f)

    with open("logreg_model.pkl", "rb") as f:
        logreg_predictor = pickle.load(f)
    return logreg_vectorizer, logreg_predictor


logreg_vectorizer, logreg_predictor = load_logreg()


@st.cache_resource
def load_lstm():
    with open("model/vocab.json", "r") as f:
        vocab_to_int = json.load(f)

    with open("model/int_vocab.json", "r") as f:
        int_to_vocab = json.load(f)
    model_concat_embed = LSTMConcatAttentionEmbed()
    model_concat_embed.load_state_dict(torch.load("model/model_weights.pt"))

    return vocab_to_int, int_to_vocab, model_concat_embed


vocab_to_int, int_to_vocab, model_concat_embed = load_lstm()


@st.cache_resource
def load_bert():
    model_class = transformers.AutoModel
    tokenizer_class = transformers.AutoTokenizer
    pretrained_weights = "cointegrated/rubert-tiny2"
    weights_path = "model/best_bert_weights.pth"
    model = load_model(model_class, pretrained_weights, weights_path)
    tokenizer = tokenizer_class.from_pretrained(pretrained_weights)

    return model, tokenizer


model, tokenizer = load_bert()


@execution_time
def plot_and_predict(review: str, SEQ_LEN: int, model: nn.Module):
    inp = preprocess_single_string(review, SEQ_LEN, vocab_to_int)
    model.eval()
    with torch.inference_mode():
        pred, _ = model(inp.long().unsqueeze(0))
    pred = pred.sigmoid().item()
    return 1 if pred > 0.75 else 0


def preprocess_text_logreg(text):
    # Apply preprocessing steps (cleaning, tokenization, vectorization)
    clean_text = data_preprocessing(
        text
    )  # Assuming data_preprocessing is your preprocessing function
    vectorized_text = logreg_vectorizer.transform([" ".join(clean_text)])
    return vectorized_text


# Define function for making predictions
@execution_time
def predict_sentiment_logreg(text):
    # Preprocess input text
    processed_text = preprocess_text_logreg(text)
    # Make prediction
    prediction = logreg_predictor.predict(processed_text)
    return prediction


metrics = {
    "Models": ["Logistic Regression", "LSTM + attention", "ruBERTtiny2"],
    "f1-macro score": [0.94376, 0.93317, 0.94070],
}


col1, col2 = st.columns([1, 3])
df = pd.DataFrame(metrics)
df.set_index("Models", inplace=True)
df.index.name = "Model"


st.sidebar.title("Model Selection")
model_type = st.sidebar.radio("Select Model Type", ["Classic ML", "LSTM", "BERT"])
st.title("Review Prediction")

# Streamlit app code
st.title("Sentiment Analysis with Logistic Regression")
text_input = st.text_input("Enter your review:")
if st.button("Predict"):
    if model_type == "Classic ML":
        prediction = predict_sentiment_logreg(text_input)
    elif model_type == "LSTM":
        prediction = plot_and_predict(
            review=text_input, SEQ_LEN=25, model=model_concat_embed
        )
    elif model_type == "BERT":
        prediction = predict_sentiment(text_input, model, tokenizer, "cpu")

    if prediction == 1:
        st.write("prediction")
        st.write("Отзыв положительный")
    elif prediction == 0:
        st.write("prediction")
        st.write("Отзыв отрицательный")

st.write(df)