Spaces:
Runtime error
Runtime error
Threatthriver
commited on
Commit
•
ccbd1ae
1
Parent(s):
a9dcc32
Update app.py
Browse files
app.py
CHANGED
@@ -5,79 +5,60 @@ import requests
|
|
5 |
import os
|
6 |
from typing import List, Tuple, Optional
|
7 |
|
8 |
-
#
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
# Initialize the InferenceClient with the specified model and API key
|
14 |
-
client = InferenceClient(
|
15 |
-
model="meta-llama/Meta-Llama-3.1-405B-Instruct",
|
16 |
-
token=api_key
|
17 |
-
)
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
"""
|
30 |
search_url = f"https://search.yahoo.com/search?p={query}"
|
31 |
-
headers = {
|
32 |
-
|
33 |
-
}
|
34 |
-
|
35 |
try:
|
36 |
response = requests.get(search_url, headers=headers)
|
37 |
-
response.raise_for_status()
|
|
|
38 |
soup = BeautifulSoup(response.content, 'html.parser')
|
39 |
-
|
40 |
-
results = []
|
41 |
result_elements = soup.find_all('div', {'class': 'dd algo algo-sr Sr'}, limit=num_results)
|
42 |
-
|
43 |
if result_elements:
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
formatted_results = "\n\n".join(
|
51 |
-
f"Title: {title}\nSnippet: {snippet}\nURL: {url}" for title, snippet, url in results
|
52 |
-
)
|
53 |
-
return formatted_results, search_url
|
54 |
else:
|
55 |
-
return
|
56 |
-
|
57 |
except requests.RequestException as e:
|
58 |
-
return f"Request error: {str(e)}",
|
59 |
except Exception as e:
|
60 |
-
return f"Processing error: {str(e)}",
|
61 |
|
62 |
-
def extract_search_query(message: str, trigger_word: str) -> Optional[str]:
|
63 |
-
"""
|
64 |
-
Extracts the search query from the message based on the trigger word.
|
65 |
-
|
66 |
-
Args:
|
67 |
-
message (str): The user's input message.
|
68 |
-
trigger_word (str): The word that activates the search feature.
|
69 |
-
|
70 |
-
Returns:
|
71 |
-
Optional[str]: The extracted search query if found, otherwise None.
|
72 |
-
"""
|
73 |
lower_message = message.lower()
|
74 |
if trigger_word in lower_message:
|
75 |
-
|
76 |
-
if
|
77 |
-
query = parts[1].strip()
|
78 |
-
return query if query else None
|
79 |
return None
|
80 |
|
|
|
|
|
|
|
|
|
81 |
def respond(
|
82 |
message: str,
|
83 |
history: List[Tuple[str, str]],
|
@@ -86,48 +67,22 @@ def respond(
|
|
86 |
temperature: float,
|
87 |
top_p: float,
|
88 |
) -> str:
|
89 |
-
"""
|
90 |
-
|
91 |
-
|
92 |
-
Args:
|
93 |
-
message (str): The user's input message.
|
94 |
-
history (List[Tuple[str, str]]): A list of tuples representing the conversation history (user, assistant).
|
95 |
-
system_message (str): A system-level message guiding the AI's behavior.
|
96 |
-
max_tokens (int): The maximum number of tokens for the output.
|
97 |
-
temperature (float): Sampling temperature for controlling the randomness.
|
98 |
-
top_p (float): Top-p (nucleus sampling) for controlling diversity.
|
99 |
-
|
100 |
-
Returns:
|
101 |
-
str: The AI's response as it is generated, including the source URL if applicable.
|
102 |
-
"""
|
103 |
-
|
104 |
-
# Check for trigger word and activate search feature if present
|
105 |
-
trigger_word = "search"
|
106 |
-
query = extract_search_query(message, trigger_word)
|
107 |
-
|
108 |
-
if query:
|
109 |
-
snippet, url = scrape_yahoo_search(query, num_results=3)
|
110 |
-
message += f"\n\nWeb Content:\n{snippet}\nSource: {url}"
|
111 |
-
elif query is None:
|
112 |
-
message = "Please provide a search query after the trigger word."
|
113 |
|
114 |
-
|
115 |
-
|
|
|
|
|
|
|
|
|
116 |
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
if assistant_response:
|
121 |
-
messages.append({"role": "assistant", "content": assistant_response})
|
122 |
|
123 |
-
# Add the latest user message to the conversation
|
124 |
-
messages.append({"role": "user", "content": message})
|
125 |
-
|
126 |
-
# Initialize an empty response
|
127 |
response = ""
|
128 |
-
|
129 |
try:
|
130 |
-
# Generate a response from the model with streaming
|
131 |
for response_chunk in client.chat_completion(
|
132 |
messages=messages,
|
133 |
max_tokens=max_tokens,
|
@@ -135,32 +90,25 @@ def respond(
|
|
135 |
temperature=temperature,
|
136 |
top_p=top_p,
|
137 |
):
|
138 |
-
|
139 |
-
response += token
|
140 |
except Exception as e:
|
141 |
-
return f"AI model error: {str(e)}"
|
142 |
|
143 |
return response
|
144 |
|
145 |
-
#
|
146 |
demo = gr.ChatInterface(
|
147 |
fn=respond,
|
148 |
additional_inputs=[
|
149 |
-
gr.Textbox(value="You are a
|
150 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max
|
151 |
-
gr.Slider(minimum=0.1, maximum=
|
152 |
-
gr.Slider(
|
153 |
-
minimum=0.1,
|
154 |
-
maximum=1.0,
|
155 |
-
value=0.95,
|
156 |
-
step=0.05,
|
157 |
-
label="Top-p (nucleus sampling)",
|
158 |
-
),
|
159 |
],
|
160 |
-
title="Chatbot
|
161 |
-
description="
|
162 |
)
|
163 |
|
164 |
-
# Launch the
|
165 |
if __name__ == "__main__":
|
166 |
-
demo.launch()
|
|
|
5 |
import os
|
6 |
from typing import List, Tuple, Optional
|
7 |
|
8 |
+
# --- Configuration ---
|
9 |
+
MODEL_NAME = "meta-llama/Meta-Llama-3.1-405B-Instruct"
|
10 |
+
API_KEY_ENV_VAR = "HF_TOKEN"
|
11 |
+
SEARCH_TRIGGER_WORD = "search"
|
12 |
+
DEFAULT_NUM_RESULTS = 3
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
# --- Utility Functions ---
|
15 |
+
|
16 |
+
def get_api_key() -> str:
|
17 |
+
"""Retrieves the API key from an environment variable."""
|
18 |
+
api_key = os.getenv(API_KEY_ENV_VAR)
|
19 |
+
if not api_key:
|
20 |
+
raise ValueError(f"API key not found. Please set the {API_KEY_ENV_VAR} environment variable.")
|
21 |
+
return api_key
|
22 |
+
|
23 |
+
def scrape_yahoo_search(query: str, num_results: int = DEFAULT_NUM_RESULTS) -> Tuple[Optional[str], Optional[str]]:
|
24 |
+
"""Scrapes Yahoo search results and returns formatted snippets and the search URL."""
|
25 |
search_url = f"https://search.yahoo.com/search?p={query}"
|
26 |
+
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36'}
|
27 |
+
|
|
|
|
|
28 |
try:
|
29 |
response = requests.get(search_url, headers=headers)
|
30 |
+
response.raise_for_status()
|
31 |
+
|
32 |
soup = BeautifulSoup(response.content, 'html.parser')
|
|
|
|
|
33 |
result_elements = soup.find_all('div', {'class': 'dd algo algo-sr Sr'}, limit=num_results)
|
34 |
+
|
35 |
if result_elements:
|
36 |
+
results = [
|
37 |
+
f"**Title:** {res.find('h3').get_text(strip=True)}\n**Snippet:** {res.find('div', {'class': 'compText aAbs'}).get_text(strip=True)}\n**URL:** {res.find('a')['href']}"
|
38 |
+
for res in result_elements
|
39 |
+
if res.find('h3') and res.find('div', {'class': 'compText aAbs'}) and res.find('a')
|
40 |
+
]
|
41 |
+
return "\n\n".join(results), search_url
|
|
|
|
|
|
|
|
|
42 |
else:
|
43 |
+
return None, search_url
|
44 |
+
|
45 |
except requests.RequestException as e:
|
46 |
+
return f"Request error: {str(e)}", None
|
47 |
except Exception as e:
|
48 |
+
return f"Processing error: {str(e)}", None
|
49 |
|
50 |
+
def extract_search_query(message: str, trigger_word: str = SEARCH_TRIGGER_WORD) -> Optional[str]:
|
51 |
+
"""Extracts the search query from the message if the trigger word is present."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
lower_message = message.lower()
|
53 |
if trigger_word in lower_message:
|
54 |
+
query = lower_message.split(trigger_word, 1)[1].strip()
|
55 |
+
return query if query else None
|
|
|
|
|
56 |
return None
|
57 |
|
58 |
+
# --- Initialize Inference Client ---
|
59 |
+
client = InferenceClient(model=MODEL_NAME, token=get_api_key())
|
60 |
+
|
61 |
+
# --- Chatbot Logic ---
|
62 |
def respond(
|
63 |
message: str,
|
64 |
history: List[Tuple[str, str]],
|
|
|
67 |
temperature: float,
|
68 |
top_p: float,
|
69 |
) -> str:
|
70 |
+
"""Generates a response from the AI model, incorporating search results if requested."""
|
71 |
+
query = extract_search_query(message)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
+
if query:
|
74 |
+
search_results, search_url = scrape_yahoo_search(query)
|
75 |
+
if search_results:
|
76 |
+
message += f"\n\n## Web Search Results:\n{search_results}\n**Source:** {search_url}"
|
77 |
+
else:
|
78 |
+
message += "\n\nI couldn't find any relevant web results for your query."
|
79 |
|
80 |
+
messages = [{"role": "system", "content": system_message}] + \
|
81 |
+
[{"role": role, "content": content} for role, content in history] + \
|
82 |
+
[{"role": "user", "content": message}]
|
|
|
|
|
83 |
|
|
|
|
|
|
|
|
|
84 |
response = ""
|
|
|
85 |
try:
|
|
|
86 |
for response_chunk in client.chat_completion(
|
87 |
messages=messages,
|
88 |
max_tokens=max_tokens,
|
|
|
90 |
temperature=temperature,
|
91 |
top_p=top_p,
|
92 |
):
|
93 |
+
response += response_chunk.choices[0].delta.content
|
|
|
94 |
except Exception as e:
|
95 |
+
return f"AI model error: {str(e)}"
|
96 |
|
97 |
return response
|
98 |
|
99 |
+
# --- Gradio Interface ---
|
100 |
demo = gr.ChatInterface(
|
101 |
fn=respond,
|
102 |
additional_inputs=[
|
103 |
+
gr.Textbox(value="You are a helpful and informative AI assistant.", label="System Message"),
|
104 |
+
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max New Tokens"),
|
105 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"),
|
106 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (Nucleus Sampling)"),
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
],
|
108 |
+
title="Chatbot with Search",
|
109 |
+
description="Chat and search the web using the power of Meta-Llama!",
|
110 |
)
|
111 |
|
112 |
+
# --- Launch the App ---
|
113 |
if __name__ == "__main__":
|
114 |
+
demo.launch()
|