chat-llm / app.py
Threatthriver's picture
Update app.py
aea68a1 verified
raw
history blame
3.2 kB
import gradio as gr
from huggingface_hub import InferenceClient
# Initialize the InferenceClient with the model ID from Hugging Face
client = InferenceClient(model="HuggingFaceH4/zephyr-7b-beta")
def respond(
message: str,
history: list[tuple[str, str]],
system_message: str,
max_tokens: int,
temperature: float,
top_p: float,
):
"""
Generates a response from the AI model based on the user's message and chat history.
Args:
message (str): The user's input message.
history (list): A list of tuples representing the conversation history (user, assistant).
system_message (str): A system-level message guiding the AI's behavior.
max_tokens (int): The maximum number of tokens for the output.
temperature (float): Sampling temperature for controlling the randomness.
top_p (float): Top-p (nucleus sampling) for controlling diversity.
Yields:
str: The AI's response as it is generated.
"""
# Prepare the conversation history for the API call
messages = [{"role": "system", "content": system_message}]
for user_input, assistant_response in history:
if user_input:
messages.append({"role": "user", "content": user_input})
if assistant_response:
messages.append({"role": "assistant", "content": assistant_response})
# Add the latest user message to the conversation
messages.append({"role": "user", "content": message})
# Initialize an empty response
response = ""
try:
# Generate a response from the model with streaming
for message in client.chat_completion(
messages=messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
except Exception as e:
yield f"An error occurred: {str(e)}"
# Define the UI layout with a more user-friendly design
with gr.Blocks() as demo:
gr.Markdown("# 🧠 AI Chatbot Interface")
gr.Markdown("### Customize your AI Chatbot's behavior and responses.")
with gr.Row():
chatbot = gr.Chatbot()
with gr.Column():
system_message = gr.Textbox(value="You are a friendly Chatbot.", label="System message", lines=2)
max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens")
temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")
with gr.Row():
message = gr.Textbox(label="Your message:", lines=1)
submit_btn = gr.Button("Send")
# Update the chatbot with the new message and response
submit_btn.click(respond,
inputs=[message, chatbot, system_message, max_tokens, temperature, top_p],
outputs=[chatbot],
show_progress=True)
# Launch the Gradio interface
if __name__ == "__main__":
demo.launch()