Spaces:
Runtime error
Runtime error
import gradio as gr | |
from huggingface_hub import InferenceClient | |
# Initialize the InferenceClient with the model ID from Hugging Face | |
client = InferenceClient(model="HuggingFaceH4/zephyr-7b-beta") | |
def respond( | |
message: str, | |
history: list[tuple[str, str]], | |
system_message: str, | |
max_tokens: int, | |
temperature: float, | |
top_p: float, | |
): | |
""" | |
Generates a response from the AI model based on the user's message and chat history. | |
Args: | |
message (str): The user's input message. | |
history (list): A list of tuples representing the conversation history (user, assistant). | |
system_message (str): A system-level message guiding the AI's behavior. | |
max_tokens (int): The maximum number of tokens for the output. | |
temperature (float): Sampling temperature for controlling the randomness. | |
top_p (float): Top-p (nucleus sampling) for controlling diversity. | |
Yields: | |
str: The AI's response as it is generated. | |
""" | |
# Prepare the conversation history for the API call | |
messages = [{"role": "system", "content": system_message}] | |
for user_input, assistant_response in history: | |
if user_input: | |
messages.append({"role": "user", "content": user_input}) | |
if assistant_response: | |
messages.append({"role": "assistant", "content": assistant_response}) | |
# Add the latest user message to the conversation | |
messages.append({"role": "user", "content": message}) | |
# Initialize an empty response | |
response = "" | |
try: | |
# Generate a response from the model with streaming | |
for message in client.chat_completion( | |
messages=messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = message.choices[0].delta.content | |
response += token | |
yield response | |
except Exception as e: | |
yield f"An error occurred: {str(e)}" | |
# Define the ChatInterface with additional input components for user customization | |
demo = gr.ChatInterface( | |
fn=respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
title="Chatbot Interface", | |
description="A customizable chatbot interface using Hugging Face's Inference API.", | |
) | |
# Launch the Gradio interface | |
if __name__ == "__main__": | |
demo.launch() | |