Spaces:
Runtime error
Runtime error
import gradio as gr | |
from huggingface_hub import InferenceClient | |
from bs4 import BeautifulSoup | |
import requests | |
from typing import List, Tuple | |
# Initialize the InferenceClient with the model ID from Hugging Face | |
client = InferenceClient(model="HuggingFaceH4/zephyr-7b-beta") | |
def scrape_yahoo_search(query: str) -> Tuple[str, str]: | |
""" | |
Scrapes Yahoo search results for the given query and returns the top result's snippet and URL. | |
Args: | |
query (str): The search query. | |
Returns: | |
Tuple[str, str]: The snippet and URL of the top search result. | |
""" | |
search_url = f"https://search.yahoo.com/search?p={query}" | |
try: | |
response = requests.get(search_url) | |
response.raise_for_status() | |
soup = BeautifulSoup(response.content, 'html.parser') | |
# Find the top search result snippet and URL | |
result = soup.find('div', {'class': 'dd algo algo-sr Sr'}) | |
if result: | |
snippet = result.find('div', {'class': 'compText aAbs'}).get_text(strip=True) | |
url = result.find('a')['href'] | |
return snippet, url | |
else: | |
return "No results found.", search_url | |
except Exception as e: | |
return f"An error occurred while scraping Yahoo: {str(e)}", search_url | |
def respond( | |
message: str, | |
history: List[Tuple[str, str]], | |
system_message: str, | |
max_tokens: int, | |
temperature: float, | |
top_p: float, | |
) -> str: | |
""" | |
Generates a response from the AI model based on the user's message, chat history, and optional Yahoo search results. | |
Args: | |
message (str): The user's input message. | |
history (List[Tuple[str, str]]): A list of tuples representing the conversation history (user, assistant). | |
system_message (str): A system-level message guiding the AI's behavior. | |
max_tokens (int): The maximum number of tokens for the output. | |
temperature (float): Sampling temperature for controlling the randomness. | |
top_p (float): Top-p (nucleus sampling) for controlling diversity. | |
Returns: | |
str: The AI's response as it is generated, including the source URL if applicable. | |
""" | |
# Check for trigger word and activate search feature if present | |
trigger_word = "search" | |
if trigger_word in message.lower(): | |
# Extract the query from the message | |
query = message.lower().split(trigger_word, 1)[-1].strip() | |
if query: | |
snippet, url = scrape_yahoo_search(query) | |
message = f"{message}\n\nWeb Content:\n{snippet}\nSource: {url}" | |
else: | |
message = "Please provide a search query after the trigger word." | |
# Prepare the conversation history for the API call | |
messages = [{"role": "system", "content": system_message}] | |
for user_input, assistant_response in history: | |
if user_input: | |
messages.append({"role": "user", "content": user_input}) | |
if assistant_response: | |
messages.append({"role": "assistant", "content": assistant_response}) | |
# Add the latest user message to the conversation | |
messages.append({"role": "user", "content": message}) | |
# Initialize an empty response | |
response = "" | |
try: | |
# Generate a response from the model with streaming | |
for response_chunk in client.chat_completion( | |
messages=messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = response_chunk.choices[0].delta.content | |
response += token | |
except Exception as e: | |
return f"An error occurred: {str(e)}" | |
return response | |
# Define the ChatInterface with additional input components for user customization | |
demo = gr.ChatInterface( | |
fn=respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
title="Chatbot Interface", | |
description="A customizable chatbot interface using Hugging Face's Inference API with Yahoo search scraping capabilities.", | |
) | |
# Launch the Gradio interface | |
if __name__ == "__main__": | |
demo.launch() | |