chat-llm / app.py
Threatthriver's picture
Update app.py
51241b7 verified
raw
history blame
4.51 kB
import gradio as gr
from huggingface_hub import InferenceClient
from bs4 import BeautifulSoup
import requests
from typing import List, Tuple
# Initialize the InferenceClient with the model ID from Hugging Face
client = InferenceClient(model="HuggingFaceH4/zephyr-7b-beta")
def scrape_yahoo_search(query: str) -> Tuple[str, str]:
"""
Scrapes Yahoo search results for the given query and returns the top result's snippet and URL.
Args:
query (str): The search query.
Returns:
Tuple[str, str]: The snippet and URL of the top search result.
"""
search_url = f"https://search.yahoo.com/search?p={query}"
try:
response = requests.get(search_url)
response.raise_for_status()
soup = BeautifulSoup(response.content, 'html.parser')
# Find the top search result snippet and URL
result = soup.find('div', {'class': 'dd algo algo-sr Sr'})
if result:
snippet = result.find('div', {'class': 'compText aAbs'}).get_text(strip=True)
url = result.find('a')['href']
return snippet, url
else:
return "No results found.", search_url
except Exception as e:
return f"An error occurred while scraping Yahoo: {str(e)}", search_url
def respond(
message: str,
history: List[Tuple[str, str]],
system_message: str,
max_tokens: int,
temperature: float,
top_p: float,
) -> str:
"""
Generates a response from the AI model based on the user's message, chat history, and optional Yahoo search results.
Args:
message (str): The user's input message.
history (List[Tuple[str, str]]): A list of tuples representing the conversation history (user, assistant).
system_message (str): A system-level message guiding the AI's behavior.
max_tokens (int): The maximum number of tokens for the output.
temperature (float): Sampling temperature for controlling the randomness.
top_p (float): Top-p (nucleus sampling) for controlling diversity.
Returns:
str: The AI's response as it is generated, including the source URL if applicable.
"""
# Check for trigger word and activate search feature if present
trigger_word = "search"
if trigger_word in message.lower():
# Extract the query from the message
query = message.lower().split(trigger_word, 1)[-1].strip()
if query:
snippet, url = scrape_yahoo_search(query)
message = f"{message}\n\nWeb Content:\n{snippet}\nSource: {url}"
else:
message = "Please provide a search query after the trigger word."
# Prepare the conversation history for the API call
messages = [{"role": "system", "content": system_message}]
for user_input, assistant_response in history:
if user_input:
messages.append({"role": "user", "content": user_input})
if assistant_response:
messages.append({"role": "assistant", "content": assistant_response})
# Add the latest user message to the conversation
messages.append({"role": "user", "content": message})
# Initialize an empty response
response = ""
try:
# Generate a response from the model with streaming
for response_chunk in client.chat_completion(
messages=messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = response_chunk.choices[0].delta.content
response += token
except Exception as e:
return f"An error occurred: {str(e)}"
return response
# Define the ChatInterface with additional input components for user customization
demo = gr.ChatInterface(
fn=respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
title="Chatbot Interface",
description="A customizable chatbot interface using Hugging Face's Inference API with Yahoo search scraping capabilities.",
)
# Launch the Gradio interface
if __name__ == "__main__":
demo.launch()