bconsolvo commited on
Commit
6571d18
·
1 Parent(s): f48fd30

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -5
app.py CHANGED
@@ -31,6 +31,8 @@ def predict(context,question):
31
  sparse_end_time = time.perf_counter()
32
  sparse_duration = (sparse_end_time - sparse_start_time) * 1000
33
  sparse_answer = sparse_predictions['answer']
 
 
34
 
35
  # dense_start_time = time.perf_counter()
36
  # dense_predictions = dense_qa_pipeline(context=context,question=question)
@@ -38,7 +40,7 @@ def predict(context,question):
38
  # dense_duration = (dense_end_time - dense_start_time) * 1000
39
  # dense_answer = dense_predictions['answer']
40
 
41
- return sparse_answer,sparse_duration #,dense_answer,dense_duration
42
 
43
  md = """This prediction model is designed to answer a question about a given input text--reading comprehension. The model does not just answer questions in general -- it only works from the text that you provide. However, automated reading comprehension can be a valuable task.
44
 
@@ -53,9 +55,10 @@ Author of Hugging Face Space: Benjamin Consolvo, AI Solutions Engineer Manager a
53
  # predict()
54
  context=gr.Text(lines=10,label="Context")
55
  question=gr.Text(label="Question")
56
- sparse_answer=gr.Text(label="Sparse Answer")
57
- sparse_duration=gr.Text(label="Sparse latency (ms)")
58
-
 
59
  # dense_answer=gr.Text(label="Dense Answer")
60
  # dense_duration=gr.Text(label="Dense latency (ms)")
61
 
@@ -66,7 +69,7 @@ iface = gr.Interface(
66
  fn=predict,
67
  inputs=[context,question],
68
  # outputs=[sparse_answer,sparse_duration,dense_answer,dense_duration],
69
- outputs=[sparse_answer,sparse_duration],
70
  examples=[[apple_context,apple_question]],
71
  title = "Question & Answer with Sparse BERT using the SQuAD dataset",
72
  description = md,
 
31
  sparse_end_time = time.perf_counter()
32
  sparse_duration = (sparse_end_time - sparse_start_time) * 1000
33
  sparse_answer = sparse_predictions['answer']
34
+ sparse_score = sparse_predictions['score']
35
+ sparse_start = sparse_predictions['start']
36
 
37
  # dense_start_time = time.perf_counter()
38
  # dense_predictions = dense_qa_pipeline(context=context,question=question)
 
40
  # dense_duration = (dense_end_time - dense_start_time) * 1000
41
  # dense_answer = dense_predictions['answer']
42
 
43
+ return sparse_answer,sparse_duration,sparse_score,sparse_start #,dense_answer,dense_duration
44
 
45
  md = """This prediction model is designed to answer a question about a given input text--reading comprehension. The model does not just answer questions in general -- it only works from the text that you provide. However, automated reading comprehension can be a valuable task.
46
 
 
55
  # predict()
56
  context=gr.Text(lines=10,label="Context")
57
  question=gr.Text(label="Question")
58
+ sparse_answer=gr.Text(label="Answer")
59
+ sparse_duration=gr.Text(label="Latency (ms)")
60
+ sparse_score=gr.Text(label="Probability score")
61
+ sparse_start=gr.Text(label="Starting character")
62
  # dense_answer=gr.Text(label="Dense Answer")
63
  # dense_duration=gr.Text(label="Dense latency (ms)")
64
 
 
69
  fn=predict,
70
  inputs=[context,question],
71
  # outputs=[sparse_answer,sparse_duration,dense_answer,dense_duration],
72
+ outputs=[sparse_answer,sparse_score,sparse_start,sparse_duration],
73
  examples=[[apple_context,apple_question]],
74
  title = "Question & Answer with Sparse BERT using the SQuAD dataset",
75
  description = md,