File size: 13,693 Bytes
cd2355c 278fc7f cd2355c 278fc7f cd2355c 278fc7f 491fabd 278fc7f 491fabd 278fc7f cd2355c 491fabd 278fc7f 0b693ee cd2355c 278fc7f cd2355c 278fc7f cd2355c 278fc7f cd2355c 278fc7f 491fabd cd2355c 278fc7f cd2355c 278fc7f cd2355c e56faab cd2355c 278fc7f cd2355c 278fc7f cd2355c 278fc7f cd2355c 278fc7f cd2355c 278fc7f cd2355c 278fc7f cd2355c 278fc7f cd2355c 278fc7f cd2355c 278fc7f cd2355c 278fc7f cd2355c 278fc7f cd2355c 278fc7f cd2355c 278fc7f cd2355c 278fc7f cd2355c 278fc7f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
import gradio as gr
import pandas as pd
import requests
from info.train_a_model import (
LLM_BENCHMARKS_TEXT)
from info.submit import (
SUBMIT_TEXT)
from info.deployment import (
DEPLOY_TEXT)
from info.programs import (
PROGRAMS_TEXT)
from info.citation import(
CITATION_TEXT)
from info.validated_chat_models import(
VALIDATED_CHAT_MODELS)
from src.processing import filter_benchmarks_table
#inference_endpoint_url = os.environ['inference_endpoint_url']
#inference_concurrency_limit = os.environ['inference_concurrency_limit']
demo = gr.Blocks()
with demo:
gr.HTML("""<h1 align="center" id="space-title">π€Powered-by-Intel LLM Leaderboard π»</h1>""")
gr.Markdown("""This leaderboard is designed to evaluate, score, and rank open-source LLMs
that have been pre-trained or fine-tuned on Intel Hardware π¦Ύ. To submit your model for evaluation,
follow the instructions and complete the form in the ποΈ Submit tab. Models submitted to the leaderboard are evaluated
on the Intel Developer Cloud βοΈ. The evaluation platform consists of Gaudi Accelerators and Xeon CPUs running benchmarks from
the [Eleuther AI Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness).""")
gr.Markdown("""Join 5000+ developers on the [Intel DevHub Discord](https://discord.gg/yNYNxK2k) to get support with your submission and
talk about everything from GenAI, HPC, to Quantum Computing.""")
gr.Markdown("""A special shout-out to the π€ [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
team for generously sharing their code and best
practices, ensuring that AI Developers have a valuable and enjoyable tool at their disposal.""")
with gr.Accordion("Chat with Top Models on the Leaderboard Here π¬", open=False):
# import pdb
chat_model_dropdown = gr.Dropdown(
choices=VALIDATED_CHAT_MODELS,
label="Select a leaderboard model to chat with. ",
multiselect=False,
value=VALIDATED_CHAT_MODELS[0],
interactive=True,
)
#chat_model_selection = chat_model_dropdown.value
chat_model_selection = 'Intel/neural-chat-7b-v1-1'
#def call_api_and_stream_response(query, chat_model):
# """
# Call the API endpoint and yield characters as they are received.
# This function simulates streaming by yielding characters one by one.
# """
# url = "http://localhost:5004/query-stream/"
# params = {"query": query,"selected_model":chat_model}
# with requests.get(url, json=params, stream=True) as r:
# for chunk in r.iter_content(chunk_size=1):
# if chunk:
# yield chunk.decode()
#
#def get_response(query, history):
# """
# Wrapper function to call the streaming API and compile the response.
# """
# response = ''
#
# global chat_model_selection
#
# for char in call_api_and_stream_response(query, chat_model=chat_model_selection):
# if char == '<':
# break
# response += char
# yield response
#
#gr.ChatInterface(get_response, retry_btn = None, undo_btn=None, concurrency_limit=5).launch()
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("π LLM Leadeboard", elem_id="llm-benchmark-table", id=0):
with gr.Row():
with gr.Column():
filter_hw = gr.CheckboxGroup(choices=["Gaudi","Xeon","GPU Max","Arc GPU","Core Ultra"],
label="Select Training Platform*",
elem_id="compute_platforms",
value=["Gaudi","Xeon","GPU Max","Arc GPU","Core Ultra"])
filter_platform = gr.CheckboxGroup(choices=["Intel Developer Cloud","AWS","Azure","Google Cloud Platform","Local"],
label="Training Infrastructure*",
elem_id="training_infra",
value=["Intel Developer Cloud","AWS","Azure","Google Cloud Platform","Local"])
filter_affiliation = gr.CheckboxGroup(choices=["No Affiliation","Intel Innovator","Intel Student Ambassador", "Intel Liftoff", "Intel Labs", "Other"],
label="Intel Program Affiliation",
elem_id="program_affiliation",
value=["No Affiliation","Intel Innovator","Intel Student Ambassador", "Intel Software Liftoff", "Intel Labs", "Other"])
with gr.Column():
filter_size = gr.CheckboxGroup(choices=[1,3,5,7,13,35,60,70,100],
label="Model Sizes (Billion of Parameters)",
elem_id="parameter_size",
value=[1,3,5,7,13,35,60,70,100])
filter_precision = gr.CheckboxGroup(choices=["fp32","fp16","bf16","int8","fp8", "int4"],
label="Model Precision",
elem_id="precision",
value=["fp32","fp16","bf16","int8","fp8", "int4"])
filter_type = gr.CheckboxGroup(choices=["pretrained","fine-tuned","chat-models","merges/moerges"],
label="Model Types",
elem_id="model_types",
value=["pretrained","fine-tuned","chat-models","merges/moerges"])
initial_df = pd.read_csv("./status/leaderboard_status_030424.csv")
def update_df(hw_selected, platform_selected, affiliation_selected, size_selected, precision_selected, type_selected):
filtered_df = filter_benchmarks_table(df=initial_df, hw_selected=hw_selected, platform_selected=platform_selected,
affiliation_selected=affiliation_selected, size_selected=size_selected,
precision_selected=precision_selected, type_selected=type_selected)
return filtered_df
initial_filtered_df = update_df(["Gaudi","Xeon","GPU Max","Arc GPU","Core Ultra"],
["Intel Developer Cloud","AWS","Azure","GCP","Local"],
["No Affiliation","Intel Innovator","Intel Student Ambassador", "Intel Software Liftoff", "Intel Labs", "Other"],
[1,3,5,7,13,35,60,70,100],
["fp8","fp16","bf16","int8","4bit"],
["pretrained","fine-tuned","chat-models","merges/moerges"])
gradio_df_display = gr.Dataframe(value=initial_filtered_df)
filter_hw.change(fn=update_df,
inputs=[filter_hw, filter_platform, filter_affiliation, filter_size, filter_precision, filter_type],
outputs=[gradio_df_display])
filter_platform.change(fn=update_df,
inputs=[filter_hw, filter_platform, filter_affiliation, filter_size, filter_precision, filter_type],
outputs=[gradio_df_display])
filter_affiliation.change(fn=update_df,
inputs=[filter_hw, filter_platform, filter_affiliation, filter_size, filter_precision, filter_type],
outputs=[gradio_df_display])
filter_size.change(fn=update_df,
inputs=[filter_hw, filter_platform, filter_affiliation, filter_size, filter_precision, filter_type],
outputs=[gradio_df_display])
filter_precision.change(fn=update_df,
inputs=[filter_hw, filter_platform, filter_affiliation, filter_size, filter_precision, filter_type],
outputs=[gradio_df_display])
filter_type.change(fn=update_df,
inputs=[filter_hw, filter_platform, filter_affiliation, filter_size, filter_precision, filter_type],
outputs=[gradio_df_display])
with gr.TabItem("π§° Train a Model", elem_id="getting-started", id=1):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
with gr.TabItem("π Deployment Tips", elem_id="deployment-tips", id=2):
gr.Markdown(DEPLOY_TEXT, elem_classes="markdown-text")
with gr.TabItem("π©βπ» Developer Programs", elem_id="hardward-program", id=3):
gr.Markdown(PROGRAMS_TEXT, elem_classes="markdown-text")
with gr.TabItem("ποΈ Submit", elem_id="submit", id=4):
gr.Markdown(SUBMIT_TEXT, elem_classes="markdown-text")
with gr.Row():
gr.Markdown("# Submit Model for Evaluation ποΈ", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(label="Model name",
info = """ Name of Model in the Hub. For example: 'Intel/neural-chat-7b-v1-1'""",)
revision_name_textbox = gr.Textbox(label="Revision commit (Branch)", placeholder="main")
model_type = gr.Dropdown(
choices=["pretrained","fine-tuned","chat models","merges/moerges"],
label="Model type",
multiselect=False,
value="pretrained",
interactive=True,
)
hw_type = gr.Dropdown(
choices=["Gaudi","Xeon","GPU Max","Arc GPU","Core Ultra"],
label="Training Hardware",
multiselect=False,
value="Gaudi",
interactive=True,
)
terms = gr.Checkbox(
label="Check if you have read and agreed to terms and conditions associated with submitting\
a model to the leaderboard.",
value=False,
interactive=True,
)
submit_button = gr.Button("π€ Submit Eval π»")
submission_result = gr.Markdown()
with gr.Column():
precision = gr.Dropdown(
choices=["fp32","fp16","bf16","int8","fp8", "int4"],
label="Precision",
multiselect=False,
value="fp16",
interactive=True,
)
weight_type = gr.Dropdown(
choices=["Original", "Adapter", "Delta"],
label="Weights type",
multiselect=False,
value="Original",
interactive=True,
info = """ Select the appropriate weights. If you have fine-tuned or adapted a model with PEFT or Delta-Tuning you likely have
LoRA Adapters or Delta Weights.""",
)
training_infra = gr.Dropdown(
choices=["Intel Developer Cloud","AWS","Azure","Google Cloud Platform","Local"],
label="Training Infrastructure",
multiselect=False,
value="Intel Developer Cloud",
interactive=True,
info = """ Select the infrastructure that the model was developed on.
Local is the ideal choice for Core Ultra, ARC GPUs, and local data center infrastructure.""",
)
affiliation = gr.Dropdown(
choices=["No Affiliation","Innovator","Student Ambassador","Intel Liftoff", "Intel Labs", "Other"],
label="Affiliation with Intel",
multiselect=False,
value="No Affiliation",
interactive=True,
info = """ Select "No Affiliation" if not part of any Intel programs.""",
)
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
# gr.Markdown("Community Submissions Coming soon!")
with gr.Accordion("π Citation", open=False):
citation =gr.Textbox(value = CITATION_TEXT,
lines=6,
label="Use the following to cite this content")
gr.Markdown("""<div style="display: flex; justify-content: center;"> <p> Intel, the Intel logo and Gaudi are trademarks of Intel Corporation or its subsidiaries.
*Other names and brands may be claimed as the property of others.
</p> </div>""")
demo.launch(share=False) |