Upload 2 files
Browse files- app.py +34 -0
- requirements.txt +9 -0
app.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from diffusers import StableDiffusionPipeline
|
3 |
+
import torch
|
4 |
+
|
5 |
+
from transformers import logging
|
6 |
+
logging.set_verbosity_error() # This suppresses warnings, including cache migration
|
7 |
+
#GPU error
|
8 |
+
from diffusers import StableDiffusionPipeline
|
9 |
+
|
10 |
+
# Load the model
|
11 |
+
model_id = "MostafaAly/stable-diffusion-finetuned"
|
12 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
|
13 |
+
|
14 |
+
# Check if CUDA is available and move the model to GPU if it is, otherwise use CPU
|
15 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
+
pipe.to(device)
|
17 |
+
|
18 |
+
print(f"Using device: {device}")
|
19 |
+
|
20 |
+
|
21 |
+
# Define the function for text-to-image generation
|
22 |
+
def generate_image(prompt):
|
23 |
+
image = pipe(prompt).images[0]
|
24 |
+
return image
|
25 |
+
|
26 |
+
# Create a Gradio interface
|
27 |
+
interface = gr.Interface(
|
28 |
+
fn=generate_image,
|
29 |
+
inputs=gr.Textbox(label="Enter your prompt"),
|
30 |
+
outputs=gr.Image(label="Generated Image"),
|
31 |
+
)
|
32 |
+
|
33 |
+
# Launch the interface
|
34 |
+
interface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi
|
2 |
+
uvicorn
|
3 |
+
torch
|
4 |
+
diffusers
|
5 |
+
transformers>=4.22.0
|
6 |
+
accelerate
|
7 |
+
Pillow # For handling images
|
8 |
+
ftfy # Fixes text issues, required for tokenization
|
9 |
+
scipy # For certain image processing operations
|