Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,24 +1,47 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
from diffusers import DiffusionPipeline
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
#
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
#
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
)
|
21 |
-
|
22 |
-
|
23 |
-
if
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from diffusers import DiffusionPipeline
|
3 |
+
import torch
|
4 |
+
|
5 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
6 |
+
|
7 |
+
# Pre-load the models but do not load them yet
|
8 |
+
models = {
|
9 |
+
"ArtifyAI v1.1": "ImageInception/ArtifyAI-v1.1",
|
10 |
+
"ArtifyAI v1.0": "ImageInception/ArtifyAI-v1.0"
|
11 |
+
}
|
12 |
+
|
13 |
+
# Function to load the selected model
|
14 |
+
def load_model(model_name):
|
15 |
+
return DiffusionPipeline.from_pretrained(models[model_name], torch_dtype=torch.float16 if device == "cuda" else torch.float32).to(device)
|
16 |
+
|
17 |
+
# Initially load the first model
|
18 |
+
pipe = load_model("ArtifyAI v1.1")
|
19 |
+
|
20 |
+
def generate_image(prompt, selected_model):
|
21 |
+
global pipe
|
22 |
+
|
23 |
+
# Load the selected model if it's not already loaded
|
24 |
+
if selected_model in models:
|
25 |
+
pipe = load_model(selected_model)
|
26 |
+
|
27 |
+
if device == "cuda":
|
28 |
+
with torch.cuda.amp.autocast():
|
29 |
+
image = pipe(prompt).images[0]
|
30 |
+
else:
|
31 |
+
image = pipe(prompt).images[0]
|
32 |
+
return image
|
33 |
+
|
34 |
+
# Gradio interface
|
35 |
+
demo = gr.Interface(
|
36 |
+
fn=generate_image,
|
37 |
+
inputs=[
|
38 |
+
gr.Textbox(label="Enter your prompt"),
|
39 |
+
gr.Dropdown(choices=list(models.keys()), label="Select Model", value="ArtifyAI v1.1")
|
40 |
+
],
|
41 |
+
outputs=gr.Image(type="pil"),
|
42 |
+
title="ArtifyAI",
|
43 |
+
description="Generate images using the selected model."
|
44 |
+
)
|
45 |
+
|
46 |
+
if __name__ == "__main__":
|
47 |
+
demo.launch()
|