Spaces:
Build error
Build error
import sys | |
import struct | |
import json | |
import numpy as np | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import sentencepiece.sentencepiece_model_pb2 as model | |
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py | |
def bytes_to_unicode(): | |
""" | |
Returns list of utf-8 byte and a corresponding list of unicode strings. | |
The reversible bpe codes work on unicode strings. | |
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. | |
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. | |
This is a signficant percentage of your normal, say, 32K bpe vocab. | |
To avoid that, we want lookup tables between utf-8 bytes and unicode strings. | |
And avoids mapping to whitespace/control characters the bpe code barfs on. | |
""" | |
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1)) | |
cs = bs[:] | |
n = 0 | |
for b in range(2**8): | |
if b not in bs: | |
bs.append(b) | |
cs.append(2**8+n) | |
n += 1 | |
cs = [chr(n) for n in cs] | |
return dict(zip(bs, cs)) | |
if len(sys.argv) < 3: | |
print("Usage: convert-h5-to-ggml.py dir-model [use-f32]\n") | |
print(" ftype == 0 -> float32") | |
print(" ftype == 1 -> float16") | |
sys.exit(1) | |
# output in the same directory as the model | |
dir_model = sys.argv[1] | |
fname_out = sys.argv[1] + "/ggml-model.bin" | |
with open(dir_model + "/config.json", "r", encoding="utf-8") as f: | |
hparams = json.load(f) | |
# possible data types | |
# ftype == 0 -> float32 | |
# ftype == 1 -> float16 | |
# | |
# map from ftype to string | |
ftype_str = ["f32", "f16"] | |
ftype = 1 | |
if len(sys.argv) > 2: | |
ftype = int(sys.argv[2]) | |
if ftype < 0 or ftype > 1: | |
print("Invalid ftype: " + str(ftype)) | |
sys.exit(1) | |
fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".bin" | |
tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True) | |
model = AutoModelForCausalLM.from_pretrained( | |
dir_model, low_cpu_mem_usage=True, trust_remote_code=True | |
) | |
# print (model) | |
# print(tokenizer.encode('I believe the meaning of life is')) | |
list_vars = model.state_dict() | |
for name in list_vars.keys(): | |
print(name, list_vars[name].shape, list_vars[name].dtype) | |
fout = open(fname_out, "wb") | |
print(hparams) | |
fout.write(struct.pack("i", 0x67676D6C)) # magic: ggml in hex | |
fout.write(struct.pack("i", hparams["d_model"])) | |
fout.write(struct.pack("i", hparams["max_seq_len"])) | |
fout.write(struct.pack("i", hparams["n_heads"])) | |
fout.write(struct.pack("i", hparams["n_layers"])) | |
fout.write(struct.pack("i", hparams["vocab_size"])) | |
fout.write(struct.pack("f", hparams["attn_config"]["alibi_bias_max"])) | |
fout.write(struct.pack("f", hparams["attn_config"]["clip_qkv"] or 0.0)) | |
fout.write(struct.pack("i", ftype)) | |
vocab_size = hparams["vocab_size"] | |
encoder = tokenizer.vocab | |
# Add added_tokens (special tokens) to the encoder | |
encoder.update(tokenizer.get_added_vocab()) | |
byte_encoder = bytes_to_unicode() | |
byte_decoder = {v:k for k, v in byte_encoder.items()} | |
counter = 0 | |
# sort by value | |
for key in sorted(encoder, key=encoder.get): | |
# workaround for key error when c not found | |
text="" | |
for c in key: | |
if c not in byte_decoder: | |
text += c | |
else: | |
text += chr(byte_decoder[c] ) | |
text = bytearray( text, encoding="utf-8" ) | |
fout.write(struct.pack("i", len(text))) | |
fout.write(text) | |
counter += 1 | |
# Repeat last token until vocab_size | |
while counter < vocab_size: | |
fout.write(struct.pack("i", len(text))) | |
fout.write(text) | |
counter += 1 | |
# assert counter == config.vocab_size | |
for name in list_vars.keys(): | |
data = list_vars[name].squeeze().numpy() | |
print("Processing variable: " + name + " with shape: ", data.shape) | |
n_dims = len(data.shape) | |
# ftype == 0 -> float32, ftype == 1 -> float16 | |
ftype_cur = 0 | |
if ftype != 0: | |
if name[-7:] == ".weight" and n_dims == 2: | |
print(" Converting to float16") | |
data = data.astype(np.float16) | |
ftype_cur = 1 | |
else: | |
print(" Converting to float32") | |
data = data.astype(np.float32) | |
ftype_cur = 0 | |
else: | |
if data.dtype != np.float32: | |
print(" Converting to float32") | |
data = data.astype(np.float32) | |
ftype_cur = 0 | |
# header | |
str = name.encode("utf-8") | |
fout.write(struct.pack("iii", n_dims, len(str), ftype_cur)) | |
for i in range(n_dims): | |
fout.write(struct.pack("i", data.shape[n_dims - 1 - i])) | |
fout.write(str) | |
# data | |
data.tofile(fout) | |
fout.close() | |
print("Done. Output file: " + fname_out) | |
print("") |