Spaces:
Build error
Build error
// Defined when llama.cpp is compiled with support for offloading model layers to GPU. | |
extern "C" { | |
// | |
// C interface | |
// | |
// TODO: show sample usage | |
// | |
struct llama_v3_model; | |
struct llama_v3_context; | |
typedef int llama_v3_token; | |
typedef struct llama_v3_token_data { | |
llama_v3_token id; // token id | |
float logit; // log-odds of the token | |
float p; // probability of the token | |
} llama_v3_token_data; | |
typedef struct llama_v3_token_data_array { | |
llama_v3_token_data * data; | |
size_t size; | |
bool sorted; | |
} llama_v3_token_data_array; | |
typedef void (*llama_v3_progress_callback)(float progress, void *ctx); | |
enum llama_v3_log_level { | |
LLAMA_V3_LOG_LEVEL_ERROR = 2, | |
LLAMA_V3_LOG_LEVEL_WARN = 3, | |
LLAMA_V3_LOG_LEVEL_INFO = 4 | |
}; | |
// Signature for logging events | |
// Note that text includes the new line character at the end for most events. | |
// If your logging mechanism cannot handle that, check if the last character is '\n' and strip it | |
// if it exists. | |
// It might not exist for progress report where '.' is output repeatedly. | |
typedef void (*llama_v3_log_callback)(enum llama_v3_log_level level, const char * text, void * user_data); | |
struct llama_v3_context_params { | |
uint32_t seed; // RNG seed, -1 for random | |
int32_t n_ctx; // text context | |
int32_t n_batch; // prompt processing batch size | |
int32_t n_gqa; // grouped-query attention (TEMP - will be moved to model hparams) | |
float rms_norm_eps; // rms norm epsilon (TEMP - will be moved to model hparams) | |
int32_t n_gpu_layers; // number of layers to store in VRAM | |
int32_t main_gpu; // the GPU that is used for scratch and small tensors | |
const float * tensor_split; // how to split layers across multiple GPUs (size: LLAMA_V3_MAX_DEVICES) | |
// ref: https://github.com/ggerganov/llama.cpp/pull/2054 | |
float rope_freq_base; // RoPE base frequency | |
float rope_freq_scale; // RoPE frequency scaling factor | |
// called with a progress value between 0 and 1, pass NULL to disable | |
llama_v3_progress_callback progress_callback; | |
// context pointer passed to the progress callback | |
void * progress_callback_user_data; | |
// Keep the booleans together to avoid misalignment during copy-by-value. | |
bool low_vram; // if true, reduce VRAM usage at the cost of performance | |
bool mul_mat_q; // if true, use experimental mul_mat_q kernels | |
bool f16_kv; // use fp16 for KV cache | |
bool logits_all; // the llama_v3_eval() call computes all logits, not just the last one | |
bool vocab_only; // only load the vocabulary, no weights | |
bool use_mmap; // use mmap if possible | |
bool use_mlock; // force system to keep model in RAM | |
bool embedding; // embedding mode only | |
}; | |
// model file types | |
enum llama_v3_ftype { | |
LLAMA_V3_FTYPE_ALL_F32 = 0, | |
LLAMA_V3_FTYPE_MOSTLY_F16 = 1, // except 1d tensors | |
LLAMA_V3_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors | |
LLAMA_V3_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors | |
LLAMA_V3_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16 | |
// LLAMA_V3_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed | |
// LLAMA_V3_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed | |
LLAMA_V3_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors | |
LLAMA_V3_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors | |
LLAMA_V3_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors | |
LLAMA_V3_FTYPE_MOSTLY_Q2_K = 10,// except 1d tensors | |
LLAMA_V3_FTYPE_MOSTLY_Q3_K_S = 11,// except 1d tensors | |
LLAMA_V3_FTYPE_MOSTLY_Q3_K_M = 12,// except 1d tensors | |
LLAMA_V3_FTYPE_MOSTLY_Q3_K_L = 13,// except 1d tensors | |
LLAMA_V3_FTYPE_MOSTLY_Q4_K_S = 14,// except 1d tensors | |
LLAMA_V3_FTYPE_MOSTLY_Q4_K_M = 15,// except 1d tensors | |
LLAMA_V3_FTYPE_MOSTLY_Q5_K_S = 16,// except 1d tensors | |
LLAMA_V3_FTYPE_MOSTLY_Q5_K_M = 17,// except 1d tensors | |
LLAMA_V3_FTYPE_MOSTLY_Q6_K = 18,// except 1d tensors | |
}; | |
// model quantization parameters | |
typedef struct llama_v3_model_quantize_params { | |
int nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency() | |
enum llama_v3_ftype ftype; // quantize to this llama_v3_ftype | |
bool allow_requantize; // allow quantizing non-f32/f16 tensors | |
bool quantize_output_tensor; // quantize output.weight | |
} llama_v3_model_quantize_params; | |
// grammar types | |
struct llama_v3_grammar; | |
// grammar element type | |
enum llama_v3_gretype { | |
// end of rule definition | |
LLAMA_V3_GRETYPE_END = 0, | |
// start of alternate definition for rule | |
LLAMA_V3_GRETYPE_ALT = 1, | |
// non-terminal element: reference to rule | |
LLAMA_V3_GRETYPE_RULE_REF = 2, | |
// terminal element: character (code point) | |
LLAMA_V3_GRETYPE_CHAR = 3, | |
// inverse char(s) ([^a], [^a-b] [^abc]) | |
LLAMA_V3_GRETYPE_CHAR_NOT = 4, | |
// modifies a preceding LLAMA_V3_GRETYPE_CHAR or LLAMA_V3_GRETYPE_CHAR_ALT to | |
// be an inclusive range ([a-z]) | |
LLAMA_V3_GRETYPE_CHAR_RNG_UPPER = 5, | |
// modifies a preceding LLAMA_V3_GRETYPE_CHAR or | |
// LLAMA_V3_GRETYPE_CHAR_RNG_UPPER to add an alternate char to match ([ab], [a-zA]) | |
LLAMA_V3_GRETYPE_CHAR_ALT = 6, | |
}; | |
typedef struct llama_v3_grammar_element { | |
enum llama_v3_gretype type; | |
uint32_t value; // Unicode code point or rule ID | |
} llama_v3_grammar_element; | |
// performance timing information | |
struct llama_v3_timings { | |
double t_start_ms; | |
double t_end_ms; | |
double t_load_ms; | |
double t_sample_ms; | |
double t_p_eval_ms; | |
double t_eval_ms; | |
int32_t n_sample; | |
int32_t n_p_eval; | |
int32_t n_eval; | |
}; | |
// Set callback for all future logging events. | |
// If this is not called, or NULL is supplied, everything is output on stderr. | |
LLAMA_V3_API void llama_v3_log_set(llama_v3_log_callback log_callback, void * user_data); | |
LLAMA_V3_API int llama_v3_max_devices(); | |
LLAMA_V3_API struct llama_v3_context_params llama_v3_context_default_params(); | |
LLAMA_V3_API struct llama_v3_model_quantize_params llama_v3_model_quantize_default_params(); | |
LLAMA_V3_API bool llama_v3_mmap_supported(); | |
LLAMA_V3_API bool llama_v3_mlock_supported(); | |
// TODO: not great API - very likely to change | |
// Initialize the llama + ggml backend | |
// If numa is true, use NUMA optimizations | |
// Call once at the start of the program | |
LLAMA_V3_API void llama_v3_backend_init(bool numa); | |
// Call once at the end of the program - currently only used for MPI | |
LLAMA_V3_API void llama_v3_backend_free(); | |
LLAMA_V3_API int64_t llama_v3_time_us(); | |
LLAMA_V3_API struct llama_v3_model * llama_v3_load_model_from_file( | |
const char * path_model, | |
struct llama_v3_context_params params); | |
LLAMA_V3_API void llama_v3_free_model(struct llama_v3_model * model); | |
LLAMA_V3_API struct llama_v3_context * llama_v3_new_context_with_model( | |
struct llama_v3_model * model, | |
struct llama_v3_context_params params); | |
// Various functions for loading a ggml llama model. | |
// Allocate (almost) all memory needed for the model. | |
// Return NULL on failure | |
LLAMA_V3_API struct llama_v3_context * llama_v3_init_from_file( | |
const char * path_model, | |
struct llama_v3_context_params params); | |
// Frees all allocated memory | |
LLAMA_V3_API void llama_v3_free(struct llama_v3_context * ctx); | |
// Returns 0 on success | |
LLAMA_V3_API int llama_v3_model_quantize( | |
const char * fname_inp, | |
const char * fname_out, | |
const llama_v3_model_quantize_params * params); | |
// Apply a LoRA adapter to a loaded model | |
// path_base_model is the path to a higher quality model to use as a base for | |
// the layers modified by the adapter. Can be NULL to use the current loaded model. | |
// The model needs to be reloaded before applying a new adapter, otherwise the adapter | |
// will be applied on top of the previous one | |
// Returns 0 on success | |
LLAMA_V3_API int llama_v3_apply_lora_from_file( | |
struct llama_v3_context * ctx, | |
const char * path_lora, | |
const char * path_base_model, | |
int n_threads); | |
LLAMA_V3_API int llama_v3_model_apply_lora_from_file( | |
const struct llama_v3_model * model, | |
const char * path_lora, | |
const char * path_base_model, | |
int n_threads); | |
// Returns the number of tokens in the KV cache | |
LLAMA_V3_API int llama_v3_get_kv_cache_token_count(const struct llama_v3_context * ctx); | |
// Sets the current rng seed. | |
LLAMA_V3_API void llama_v3_set_rng_seed(struct llama_v3_context * ctx, uint32_t seed); | |
// Returns the maximum size in bytes of the state (rng, logits, embedding | |
// and kv_cache) - will often be smaller after compacting tokens | |
LLAMA_V3_API size_t llama_v3_get_state_size(const struct llama_v3_context * ctx); | |
// Copies the state to the specified destination address. | |
// Destination needs to have allocated enough memory. | |
// Returns the number of bytes copied | |
LLAMA_V3_API size_t llama_v3_copy_state_data(struct llama_v3_context * ctx, uint8_t * dst); | |
// Set the state reading from the specified address | |
// Returns the number of bytes read | |
LLAMA_V3_API size_t llama_v3_set_state_data(struct llama_v3_context * ctx, uint8_t * src); | |
// Save/load session file | |
LLAMA_V3_API bool llama_v3_load_session_file(struct llama_v3_context * ctx, const char * path_session, llama_v3_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out); | |
LLAMA_V3_API bool llama_v3_save_session_file(struct llama_v3_context * ctx, const char * path_session, const llama_v3_token * tokens, size_t n_token_count); | |
// Run the llama inference to obtain the logits and probabilities for the next token. | |
// tokens + n_tokens is the provided batch of new tokens to process | |
// n_past is the number of tokens to use from previous eval calls | |
// Returns 0 on success | |
LLAMA_V3_API int llama_v3_eval( | |
struct llama_v3_context * ctx, | |
const llama_v3_token * tokens, | |
int n_tokens, | |
int n_past, | |
int n_threads); | |
// Same as llama_v3_eval, but use float matrix input directly. | |
LLAMA_V3_API int llama_v3_eval_embd( | |
struct llama_v3_context * ctx, | |
const float * embd, | |
int n_tokens, | |
int n_past, | |
int n_threads); | |
// Export a static computation graph for context of 511 and batch size of 1 | |
// NOTE: since this functionality is mostly for debugging and demonstration purposes, we hardcode these | |
// parameters here to keep things simple | |
// IMPORTANT: do not use for anything else other than debugging and testing! | |
LLAMA_V3_API int llama_v3_eval_export(struct llama_v3_context * ctx, const char * fname); | |
// Convert the provided text into tokens. | |
// The tokens pointer must be large enough to hold the resulting tokens. | |
// Returns the number of tokens on success, no more than n_max_tokens | |
// Returns a negative number on failure - the number of tokens that would have been returned | |
// TODO: not sure if correct | |
LLAMA_V3_API int llama_v3_tokenize( | |
struct llama_v3_context * ctx, | |
const char * text, | |
llama_v3_token * tokens, | |
int n_max_tokens, | |
bool add_bos); | |
LLAMA_V3_API int llama_v3_tokenize_with_model( | |
const struct llama_v3_model * model, | |
const char * text, | |
llama_v3_token * tokens, | |
int n_max_tokens, | |
bool add_bos); | |
LLAMA_V3_API int llama_v3_n_vocab(const struct llama_v3_context * ctx); | |
LLAMA_V3_API int llama_v3_n_ctx (const struct llama_v3_context * ctx); | |
LLAMA_V3_API int llama_v3_n_embd (const struct llama_v3_context * ctx); | |
LLAMA_V3_API int llama_v3_n_vocab_from_model(const struct llama_v3_model * model); | |
LLAMA_V3_API int llama_v3_n_ctx_from_model (const struct llama_v3_model * model); | |
LLAMA_V3_API int llama_v3_n_embd_from_model (const struct llama_v3_model * model); | |
LLAMA_V3_API int llama_v3_model_type(const struct llama_v3_model * model, char * buf, size_t buf_size); | |
// Get the vocabulary as output parameters. | |
// Returns number of results. | |
LLAMA_V3_API int llama_v3_get_vocab( | |
const struct llama_v3_context * ctx, | |
const char * * strings, | |
float * scores, | |
int capacity); | |
LLAMA_V3_API int llama_v3_get_vocab_from_model( | |
const struct llama_v3_model * model, | |
const char * * strings, | |
float * scores, | |
int capacity); | |
// Token logits obtained from the last call to llama_v3_eval() | |
// The logits for the last token are stored in the last row | |
// Can be mutated in order to change the probabilities of the next token | |
// Rows: n_tokens | |
// Cols: n_vocab | |
LLAMA_V3_API float * llama_v3_get_logits(struct llama_v3_context * ctx); | |
// Get the embeddings for the input | |
// shape: [n_embd] (1-dimensional) | |
LLAMA_V3_API float * llama_v3_get_embeddings(struct llama_v3_context * ctx); | |
// Token Id -> String. Uses the vocabulary in the provided context | |
LLAMA_V3_API const char * llama_v3_token_to_str( | |
const struct llama_v3_context * ctx, | |
llama_v3_token token); | |
LLAMA_V3_API const char * llama_v3_token_to_str_with_model( | |
const struct llama_v3_model * model, | |
llama_v3_token token); | |
// Special tokens | |
LLAMA_V3_API llama_v3_token llama_v3_token_bos(); // beginning-of-sentence | |
LLAMA_V3_API llama_v3_token llama_v3_token_eos(); // end-of-sentence | |
LLAMA_V3_API llama_v3_token llama_v3_token_nl(); // next-line | |
// Grammar | |
// | |
LLAMA_V3_API struct llama_v3_grammar * llama_v3_grammar_init( | |
const llama_v3_grammar_element ** rules, | |
size_t n_rules, | |
size_t start_rule_index); | |
LLAMA_V3_API void llama_v3_grammar_free(struct llama_v3_grammar * grammar); | |
// Sampling functions | |
/// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix. | |
LLAMA_V3_API void llama_v3_sample_repetition_penalty(struct llama_v3_context * ctx, llama_v3_token_data_array * candidates, const llama_v3_token * last_tokens, size_t last_tokens_size, float penalty); | |
/// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details. | |
LLAMA_V3_API void llama_v3_sample_frequency_and_presence_penalties(struct llama_v3_context * ctx, llama_v3_token_data_array * candidates, const llama_v3_token * last_tokens, size_t last_tokens_size, float alpha_frequency, float alpha_presence); | |
/// @details Apply classifier-free guidance to the logits as described in academic paper "Stay on topic with Classifier-Free Guidance" https://arxiv.org/abs/2306.17806 | |
/// @param candidates A vector of `llama_v3_token_data` containing the candidate tokens, the logits must be directly extracted from the original generation context without being sorted. | |
/// @params guidance_ctx A separate context from the same model. Other than a negative prompt at the beginning, it should have all generated and user input tokens copied from the main context. | |
/// @params scale Guidance strength. 1.0f means no guidance. Higher values mean stronger guidance. | |
LLAMA_V3_API void llama_v3_sample_classifier_free_guidance( | |
struct llama_v3_context * ctx, | |
llama_v3_token_data_array * candidates, | |
struct llama_v3_context * guidance_ctx, | |
float scale); | |
/// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits. | |
LLAMA_V3_API void llama_v3_sample_softmax(struct llama_v3_context * ctx, llama_v3_token_data_array * candidates); | |
/// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751 | |
LLAMA_V3_API void llama_v3_sample_top_k(struct llama_v3_context * ctx, llama_v3_token_data_array * candidates, int k, size_t min_keep); | |
/// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751 | |
LLAMA_V3_API void llama_v3_sample_top_p(struct llama_v3_context * ctx, llama_v3_token_data_array * candidates, float p, size_t min_keep); | |
/// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/. | |
LLAMA_V3_API void llama_v3_sample_tail_free(struct llama_v3_context * ctx, llama_v3_token_data_array * candidates, float z, size_t min_keep); | |
/// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666. | |
LLAMA_V3_API void llama_v3_sample_typical(struct llama_v3_context * ctx, llama_v3_token_data_array * candidates, float p, size_t min_keep); | |
LLAMA_V3_API void llama_v3_sample_temperature(struct llama_v3_context * ctx, llama_v3_token_data_array * candidates, float temp); | |
/// @details Apply constraints from grammar | |
LLAMA_V3_API void llama_v3_sample_grammar(struct llama_v3_context * ctx, llama_v3_token_data_array * candidates, const struct llama_v3_grammar * grammar); | |
/// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words. | |
/// @param candidates A vector of `llama_v3_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text. | |
/// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text. | |
/// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates. | |
/// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm. | |
/// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal. | |
LLAMA_V3_API llama_v3_token llama_v3_sample_token_mirostat(struct llama_v3_context * ctx, llama_v3_token_data_array * candidates, float tau, float eta, int m, float * mu); | |
/// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words. | |
/// @param candidates A vector of `llama_v3_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text. | |
/// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text. | |
/// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates. | |
/// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal. | |
LLAMA_V3_API llama_v3_token llama_v3_sample_token_mirostat_v2(struct llama_v3_context * ctx, llama_v3_token_data_array * candidates, float tau, float eta, float * mu); | |
/// @details Selects the token with the highest probability. | |
LLAMA_V3_API llama_v3_token llama_v3_sample_token_greedy(struct llama_v3_context * ctx, llama_v3_token_data_array * candidates); | |
/// @details Randomly selects a token from the candidates based on their probabilities. | |
LLAMA_V3_API llama_v3_token llama_v3_sample_token(struct llama_v3_context * ctx, llama_v3_token_data_array * candidates); | |
/// @details Accepts the sampled token into the grammar | |
LLAMA_V3_API void llama_v3_grammar_accept_token(struct llama_v3_context * ctx, struct llama_v3_grammar * grammar, llama_v3_token token); | |
// Performance information | |
LLAMA_V3_API struct llama_v3_timings llama_v3_get_timings(struct llama_v3_context * ctx); | |
LLAMA_V3_API void llama_v3_print_timings(struct llama_v3_context * ctx); | |
LLAMA_V3_API void llama_v3_reset_timings(struct llama_v3_context * ctx); | |
// Print system information | |
LLAMA_V3_API const char * llama_v3_print_system_info(void); | |
} | |
// Internal API to be implemented by llama.cpp and used by tests/benchmarks only | |
struct ggml_tensor; | |
const std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_v3_internal_get_tensor_map(struct llama_v3_context * ctx); | |