Spaces:
Build error
Build error
// crash the server in debug mode, otherwise send an http 500 error | |
// auto generated files (update with ./deps.sh) | |
using namespace httplib; | |
using json = nlohmann::json; | |
struct server_params | |
{ | |
std::string hostname = "127.0.0.1"; | |
std::string public_path = "examples/server/public"; | |
int32_t port = 8080; | |
int32_t read_timeout = 600; | |
int32_t write_timeout = 600; | |
}; | |
// completion token output with probabilities | |
struct completion_token_output | |
{ | |
struct token_prob | |
{ | |
llama_token tok; | |
float prob; | |
}; | |
std::vector<token_prob> probs; | |
llama_token tok; | |
}; | |
static size_t common_part(const std::vector<llama_token> &a, const std::vector<llama_token> &b) | |
{ | |
size_t i; | |
for (i = 0; i < a.size() && i < b.size() && a[i] == b[i]; i++) | |
{ | |
} | |
return i; | |
} | |
enum stop_type | |
{ | |
STOP_FULL, | |
STOP_PARTIAL, | |
}; | |
static bool ends_with(const std::string &str, const std::string &suffix) | |
{ | |
return str.size() >= suffix.size() && | |
0 == str.compare(str.size() - suffix.size(), suffix.size(), suffix); | |
} | |
static size_t find_partial_stop_string(const std::string &stop, | |
const std::string &text) | |
{ | |
if (!text.empty() && !stop.empty()) | |
{ | |
const char text_last_char = text.back(); | |
for (int64_t char_index = stop.size() - 1; char_index >= 0; char_index--) | |
{ | |
if (stop[char_index] == text_last_char) | |
{ | |
const std::string current_partial = stop.substr(0, char_index + 1); | |
if (ends_with(text, current_partial)) | |
{ | |
return text.size() - char_index - 1; | |
} | |
} | |
} | |
} | |
return std::string::npos; | |
} | |
template <class Iter> | |
static std::string tokens_to_str(llama_context *ctx, Iter begin, Iter end) | |
{ | |
std::string ret; | |
for (; begin != end; ++begin) | |
{ | |
ret += llama_token_to_piece(ctx, *begin); | |
} | |
return ret; | |
} | |
static void server_log(const char *level, const char *function, int line, | |
const char *message, const nlohmann::ordered_json &extra) | |
{ | |
nlohmann::ordered_json log{ | |
{"timestamp", time(nullptr)}, | |
{"level", level}, | |
{"function", function}, | |
{"line", line}, | |
{"message", message}, | |
}; | |
if (!extra.empty()) | |
{ | |
log.merge_patch(extra); | |
} | |
const std::string str = log.dump(-1, ' ', false, json::error_handler_t::replace); | |
printf("%.*s\n", (int)str.size(), str.data()); | |
fflush(stdout); | |
} | |
// format incomplete utf-8 multibyte character for output | |
static std::string tokens_to_output_formatted_string(const llama_context *ctx, const llama_token token) | |
{ | |
std::string out = token == -1 ? "" : llama_token_to_piece(ctx, token); | |
// if the size is 1 and first bit is 1, meaning it's a partial character | |
// (size > 1 meaning it's already a known token) | |
if (out.size() == 1 && (out[0] & 0x80) == 0x80) | |
{ | |
std::stringstream ss; | |
ss << std::hex << (out[0] & 0xff); | |
std::string res(ss.str()); | |
out = "byte: \\x" + res; | |
} | |
return out; | |
} | |
// convert a vector of completion_token_output to json | |
static json probs_vector_to_json(const llama_context *ctx, const std::vector<completion_token_output> & probs) | |
{ | |
json out = json::array(); | |
for (const auto &prob : probs) | |
{ | |
json probs_for_token = json::array(); | |
for (const auto &p : prob.probs) | |
{ | |
std::string tok_str = tokens_to_output_formatted_string(ctx, p.tok); | |
probs_for_token.push_back(json{ | |
{"tok_str", tok_str}, | |
{"prob", p.prob}, | |
}); | |
} | |
std::string tok_str = tokens_to_output_formatted_string(ctx, prob.tok); | |
out.push_back(json{ | |
{"content", tok_str}, | |
{"probs", probs_for_token}, | |
}); | |
} | |
return out; | |
} | |
static bool server_verbose = false; | |
struct llama_server_context | |
{ | |
bool stream = false; | |
bool has_next_token = false; | |
std::string generated_text; | |
std::vector<completion_token_output> generated_token_probs; | |
size_t num_prompt_tokens = 0; | |
size_t num_tokens_predicted = 0; | |
size_t n_past = 0; | |
size_t n_remain = 0; | |
json prompt; | |
std::vector<llama_token> embd; | |
std::vector<llama_token> last_n_tokens; | |
llama_model *model = nullptr; | |
llama_context *ctx = nullptr; | |
gpt_params params; | |
llama_sampling_context ctx_sampling; | |
int n_ctx; | |
grammar_parser::parse_state parsed_grammar; | |
llama_grammar *grammar = nullptr; | |
bool truncated = false; | |
bool stopped_eos = false; | |
bool stopped_word = false; | |
bool stopped_limit = false; | |
std::string stopping_word; | |
int32_t multibyte_pending = 0; | |
std::mutex mutex; | |
std::unique_lock<std::mutex> lock() | |
{ | |
return std::unique_lock<std::mutex>(mutex); | |
} | |
~llama_server_context() | |
{ | |
if (ctx) | |
{ | |
llama_free(ctx); | |
ctx = nullptr; | |
} | |
if (model) | |
{ | |
llama_free_model(model); | |
model = nullptr; | |
} | |
} | |
void rewind() | |
{ | |
params.antiprompt.clear(); | |
params.grammar.clear(); | |
num_prompt_tokens = 0; | |
num_tokens_predicted = 0; | |
generated_text = ""; | |
generated_text.reserve(n_ctx); | |
generated_token_probs.clear(); | |
truncated = false; | |
stopped_eos = false; | |
stopped_word = false; | |
stopped_limit = false; | |
stopping_word = ""; | |
multibyte_pending = 0; | |
n_remain = 0; | |
n_past = 0; | |
if (grammar != nullptr) { | |
llama_grammar_free(grammar); | |
grammar = nullptr; | |
ctx_sampling = llama_sampling_context_init(params, NULL); | |
} | |
} | |
bool loadModel(const gpt_params ¶ms_) | |
{ | |
params = params_; | |
std::tie(model, ctx) = llama_init_from_gpt_params(params); | |
if (model == nullptr) | |
{ | |
LOG_ERROR("unable to load model", {{"model", params_.model}}); | |
return false; | |
} | |
n_ctx = llama_n_ctx(ctx); | |
last_n_tokens.resize(n_ctx); | |
std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0); | |
return true; | |
} | |
std::vector<llama_token> tokenize(const json & json_prompt, bool add_bos) const | |
{ | |
// If `add_bos` is true, we only add BOS, when json_prompt is a string, | |
// or the first element of the json_prompt array is a string. | |
std::vector<llama_token> prompt_tokens; | |
if (json_prompt.is_array()) | |
{ | |
bool first = true; | |
for (const auto& p : json_prompt) | |
{ | |
if (p.is_string()) | |
{ | |
auto s = p.template get<std::string>(); | |
std::vector<llama_token> p; | |
if (first) | |
{ | |
p = ::llama_tokenize(ctx, s, add_bos); | |
first = false; | |
} | |
else | |
{ | |
p = ::llama_tokenize(ctx, s, false); | |
} | |
prompt_tokens.insert(prompt_tokens.end(), p.begin(), p.end()); | |
} | |
else | |
{ | |
if (first) | |
{ | |
first = false; | |
} | |
prompt_tokens.push_back(p.template get<llama_token>()); | |
} | |
} | |
} | |
else | |
{ | |
auto s = json_prompt.template get<std::string>(); | |
prompt_tokens = ::llama_tokenize(ctx, s, add_bos); | |
} | |
return prompt_tokens; | |
} | |
bool loadGrammar() | |
{ | |
if (!params.grammar.empty()) { | |
parsed_grammar = grammar_parser::parse(params.grammar.c_str()); | |
// will be empty (default) if there are parse errors | |
if (parsed_grammar.rules.empty()) { | |
LOG_ERROR("grammar parse error", {{"grammar", params.grammar}}); | |
return false; | |
} | |
grammar_parser::print_grammar(stderr, parsed_grammar); | |
{ | |
auto it = params.sampling_params.logit_bias.find(llama_token_eos(ctx)); | |
if (it != params.sampling_params.logit_bias.end() && it->second == -INFINITY) { | |
LOG_WARNING("EOS token is disabled, which will cause most grammars to fail", {}); | |
} | |
} | |
std::vector<const llama_grammar_element *> grammar_rules(parsed_grammar.c_rules()); | |
grammar = llama_grammar_init( | |
grammar_rules.data(), grammar_rules.size(), parsed_grammar.symbol_ids.at("root")); | |
} | |
ctx_sampling = llama_sampling_context_init(params, grammar); | |
return true; | |
} | |
void loadInfill() | |
{ | |
bool suff_rm_leading_spc = true; | |
if (params.input_suffix.find_first_of(" ") == 0 && params.input_suffix.size() > 1) { | |
params.input_suffix.erase(0, 1); | |
suff_rm_leading_spc = false; | |
} | |
auto prefix_tokens = tokenize(params.input_prefix, false); | |
auto suffix_tokens = tokenize(params.input_suffix, false); | |
const int space_token = 29871; | |
if (suff_rm_leading_spc && suffix_tokens[0] == space_token) { | |
suffix_tokens.erase(suffix_tokens.begin()); | |
} | |
prefix_tokens.insert(prefix_tokens.begin(), llama_token_prefix(ctx)); | |
prefix_tokens.insert(prefix_tokens.begin(), llama_token_bos(ctx)); // always add BOS | |
prefix_tokens.insert(prefix_tokens.end(), llama_token_suffix(ctx)); | |
prefix_tokens.insert(prefix_tokens.end(), suffix_tokens.begin(), suffix_tokens.end()); | |
prefix_tokens.push_back(llama_token_middle(ctx)); | |
auto prompt_tokens = prefix_tokens; | |
num_prompt_tokens = prompt_tokens.size(); | |
if (params.n_keep < 0) | |
{ | |
params.n_keep = (int)num_prompt_tokens; | |
} | |
params.n_keep = std::min(params.n_ctx - 4, params.n_keep); | |
// if input prompt is too big, truncate like normal | |
if (num_prompt_tokens >= (size_t)params.n_ctx) | |
{ | |
printf("Input prompt is too big, truncating. Can only take %d tokens but got %zu\n", params.n_ctx, num_prompt_tokens); | |
// todo we probably want to cut from both sides | |
const int n_left = (params.n_ctx - params.n_keep) / 2; | |
std::vector<llama_token> new_tokens(prompt_tokens.begin(), prompt_tokens.begin() + params.n_keep); | |
const int erased_blocks = (num_prompt_tokens - params.n_keep - n_left - 1) / n_left; | |
new_tokens.insert(new_tokens.end(), prompt_tokens.begin() + params.n_keep + erased_blocks * n_left, prompt_tokens.end()); | |
std::copy(prompt_tokens.end() - params.n_ctx, prompt_tokens.end(), last_n_tokens.begin()); | |
LOG_VERBOSE("input truncated", { | |
{"n_ctx", params.n_ctx}, | |
{"n_keep", params.n_keep}, | |
{"n_left", n_left}, | |
{"new_tokens", tokens_to_str(ctx, new_tokens.cbegin(), new_tokens.cend())}, | |
}); | |
truncated = true; | |
prompt_tokens = new_tokens; | |
} | |
else | |
{ | |
const size_t ps = num_prompt_tokens; | |
std::fill(last_n_tokens.begin(), last_n_tokens.end() - ps, 0); | |
std::copy(prompt_tokens.begin(), prompt_tokens.end(), last_n_tokens.end() - ps); | |
} | |
// compare the evaluated prompt with the new prompt | |
n_past = common_part(embd, prompt_tokens); | |
embd = prompt_tokens; | |
if (n_past == num_prompt_tokens) | |
{ | |
// we have to evaluate at least 1 token to generate logits. | |
printf("we have to evaluate at least 1 token to generate logits\n"); | |
n_past--; | |
} | |
// since #3228 we now have to manually manage the KV cache | |
llama_kv_cache_seq_rm(ctx, 0, n_past, -1); | |
LOG_VERBOSE("prompt ingested", { | |
{"n_past", n_past}, | |
{"cached", tokens_to_str(ctx, embd.cbegin(), embd.cbegin() + n_past)}, | |
{"to_eval", tokens_to_str(ctx, embd.cbegin() + n_past, embd.cend())}, | |
}); | |
has_next_token = true; | |
} | |
void loadPrompt() | |
{ | |
auto prompt_tokens = tokenize(prompt, true); // always add BOS | |
num_prompt_tokens = prompt_tokens.size(); | |
if (params.n_keep < 0) | |
{ | |
params.n_keep = (int)num_prompt_tokens; | |
} | |
params.n_keep = std::min(n_ctx - 4, params.n_keep); | |
// if input prompt is too big, truncate like normal | |
if (num_prompt_tokens >= (size_t)n_ctx) | |
{ | |
const int n_left = (n_ctx - params.n_keep) / 2; | |
std::vector<llama_token> new_tokens(prompt_tokens.begin(), prompt_tokens.begin() + params.n_keep); | |
const int erased_blocks = (num_prompt_tokens - params.n_keep - n_left - 1) / n_left; | |
new_tokens.insert(new_tokens.end(), prompt_tokens.begin() + params.n_keep + erased_blocks * n_left, prompt_tokens.end()); | |
std::copy(prompt_tokens.end() - n_ctx, prompt_tokens.end(), last_n_tokens.begin()); | |
LOG_VERBOSE("input truncated", { | |
{"n_ctx", n_ctx}, | |
{"n_keep", params.n_keep}, | |
{"n_left", n_left}, | |
{"new_tokens", tokens_to_str(ctx, new_tokens.cbegin(), new_tokens.cend())}, | |
}); | |
truncated = true; | |
prompt_tokens = new_tokens; | |
} | |
else | |
{ | |
const size_t ps = num_prompt_tokens; | |
std::fill(last_n_tokens.begin(), last_n_tokens.end() - ps, 0); | |
std::copy(prompt_tokens.begin(), prompt_tokens.end(), last_n_tokens.end() - ps); | |
} | |
// compare the evaluated prompt with the new prompt | |
n_past = common_part(embd, prompt_tokens); | |
embd = prompt_tokens; | |
if (n_past == num_prompt_tokens) | |
{ | |
// we have to evaluate at least 1 token to generate logits. | |
n_past--; | |
} | |
// since #3228 we now have to manually manage the KV cache | |
llama_kv_cache_seq_rm(ctx, 0, n_past, -1); | |
LOG_VERBOSE("prompt ingested", { | |
{"n_past", n_past}, | |
{"cached", tokens_to_str(ctx, embd.cbegin(), embd.cbegin() + n_past)}, | |
{"to_eval", tokens_to_str(ctx, embd.cbegin() + n_past, embd.cend())}, | |
}); | |
has_next_token = true; | |
} | |
void beginCompletion() | |
{ | |
// number of tokens to keep when resetting context | |
n_remain = params.n_predict; | |
llama_set_rng_seed(ctx, params.seed); | |
} | |
completion_token_output nextToken() | |
{ | |
completion_token_output result; | |
result.tok = -1; | |
if (embd.size() >= (size_t)n_ctx) | |
{ | |
// Shift context | |
const int n_left = n_past - params.n_keep - 1; | |
const int n_discard = n_left/2; | |
llama_kv_cache_seq_rm (ctx, 0, params.n_keep + 1 , params.n_keep + n_discard + 1); | |
llama_kv_cache_seq_shift(ctx, 0, params.n_keep + 1 + n_discard, n_past, -n_discard); | |
for (size_t i = params.n_keep + 1 + n_discard; i < embd.size(); i++) | |
{ | |
embd[i - n_discard] = embd[i]; | |
} | |
embd.resize(embd.size() - n_discard); | |
n_past -= n_discard; | |
truncated = true; | |
LOG_VERBOSE("input truncated", { | |
{"n_ctx", n_ctx}, | |
{"n_keep", params.n_keep}, | |
{"n_left", n_left}, | |
}); | |
} | |
bool tg = true; | |
while (n_past < embd.size()) | |
{ | |
int n_eval = (int)embd.size() - n_past; | |
tg = n_eval == 1; | |
if (n_eval > params.n_batch) | |
{ | |
n_eval = params.n_batch; | |
} | |
if (llama_decode(ctx, llama_batch_get_one(&embd[n_past], n_eval, n_past, 0))) | |
{ | |
LOG_ERROR("failed to eval", { | |
{"n_eval", n_eval}, | |
{"n_past", n_past}, | |
{"embd", tokens_to_str(ctx, embd.cbegin() + n_past, embd.cend())}, | |
}); | |
has_next_token = false; | |
return result; | |
} | |
n_past += n_eval; | |
} | |
if (params.n_predict == 0) | |
{ | |
has_next_token = false; | |
result.tok = llama_token_eos(ctx); | |
return result; | |
} | |
{ | |
// out of user input, sample next token | |
std::vector<llama_token_data> candidates; | |
candidates.reserve(llama_n_vocab(model)); | |
result.tok = llama_sampling_sample(ctx, NULL, ctx_sampling, last_n_tokens, candidates); | |
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; | |
const int32_t n_probs = params.sampling_params.n_probs; | |
if (params.sampling_params.temp <= 0 && n_probs > 0) | |
{ | |
// For llama_sample_token_greedy we need to sort candidates | |
llama_sample_softmax(ctx, &candidates_p); | |
} | |
for (size_t i = 0; i < std::min(candidates_p.size, (size_t)n_probs); ++i) | |
{ | |
result.probs.push_back({candidates_p.data[i].id, candidates_p.data[i].p}); | |
} | |
last_n_tokens.erase(last_n_tokens.begin()); | |
last_n_tokens.push_back(result.tok); | |
if (tg) { | |
num_tokens_predicted++; | |
} | |
} | |
// add it to the context | |
embd.push_back(result.tok); | |
// decrement remaining sampling budget | |
--n_remain; | |
if (!embd.empty() && embd.back() == llama_token_eos(ctx)) | |
{ | |
// stopping_word = llama_token_to_piece(ctx, embd.back()); | |
has_next_token = false; | |
stopped_eos = true; | |
LOG_VERBOSE("eos token found", {}); | |
return result; | |
} | |
has_next_token = params.n_predict == -1 || n_remain != 0; | |
return result; | |
} | |
size_t findStoppingStrings(const std::string &text, const size_t last_token_size, | |
const stop_type type) | |
{ | |
size_t stop_pos = std::string::npos; | |
for (const std::string &word : params.antiprompt) | |
{ | |
size_t pos; | |
if (type == STOP_FULL) | |
{ | |
const size_t tmp = word.size() + last_token_size; | |
const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0; | |
pos = text.find(word, from_pos); | |
} | |
else | |
{ | |
pos = find_partial_stop_string(word, text); | |
} | |
if (pos != std::string::npos && | |
(stop_pos == std::string::npos || pos < stop_pos)) | |
{ | |
if (type == STOP_FULL) | |
{ | |
stopping_word = word; | |
stopped_word = true; | |
has_next_token = false; | |
} | |
stop_pos = pos; | |
} | |
} | |
return stop_pos; | |
} | |
completion_token_output doCompletion() | |
{ | |
auto token_with_probs = nextToken(); | |
const std::string token_text = token_with_probs.tok == -1 ? "" : llama_token_to_piece(ctx, token_with_probs.tok); | |
generated_text += token_text; | |
if (params.sampling_params.n_probs > 0) | |
{ | |
generated_token_probs.push_back(token_with_probs); | |
} | |
if (multibyte_pending > 0) | |
{ | |
multibyte_pending -= token_text.size(); | |
} | |
else if (token_text.size() == 1) | |
{ | |
const char c = token_text[0]; | |
// 2-byte characters: 110xxxxx 10xxxxxx | |
if ((c & 0xE0) == 0xC0) | |
{ | |
multibyte_pending = 1; | |
// 3-byte characters: 1110xxxx 10xxxxxx 10xxxxxx | |
} | |
else if ((c & 0xF0) == 0xE0) | |
{ | |
multibyte_pending = 2; | |
// 4-byte characters: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx | |
} | |
else if ((c & 0xF8) == 0xF0) | |
{ | |
multibyte_pending = 3; | |
} | |
else | |
{ | |
multibyte_pending = 0; | |
} | |
} | |
if (multibyte_pending > 0 && !has_next_token) | |
{ | |
has_next_token = true; | |
n_remain++; | |
} | |
if (!has_next_token && n_remain == 0) | |
{ | |
stopped_limit = true; | |
} | |
LOG_VERBOSE("next token", { | |
{"token", token_with_probs.tok}, | |
{"token_text", tokens_to_output_formatted_string(ctx, token_with_probs.tok)}, | |
{"has_next_token", has_next_token}, | |
{"n_remain", n_remain}, | |
{"num_tokens_predicted", num_tokens_predicted}, | |
{"stopped_eos", stopped_eos}, | |
{"stopped_word", stopped_word}, | |
{"stopped_limit", stopped_limit}, | |
{"stopping_word", stopping_word}, | |
}); | |
return token_with_probs; | |
} | |
std::vector<float> getEmbedding() | |
{ | |
static const int n_embd = llama_n_embd(model); | |
if (!params.embedding) | |
{ | |
LOG_WARNING("embedding disabled", { | |
{"params.embedding", params.embedding}, | |
}); | |
return std::vector<float>(n_embd, 0.0f); | |
} | |
const float *data = llama_get_embeddings(ctx); | |
std::vector<float> embedding(data, data + n_embd); | |
return embedding; | |
} | |
}; | |
static void server_print_usage(const char *argv0, const gpt_params ¶ms, | |
const server_params &sparams) | |
{ | |
printf("usage: %s [options]\n", argv0); | |
printf("\n"); | |
printf("options:\n"); | |
printf(" -h, --help show this help message and exit\n"); | |
printf(" -v, --verbose verbose output (default: %s)\n", server_verbose ? "enabled" : "disabled"); | |
printf(" -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads); | |
printf(" -tb N, --threads-batch N number of threads to use during batch and prompt processing (default: same as --threads)\n"); | |
printf(" -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx); | |
printf(" --rope-freq-base N RoPE base frequency (default: loaded from model)\n"); | |
printf(" --rope-freq-scale N RoPE frequency scaling factor (default: loaded from model)\n"); | |
printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch); | |
printf(" --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n"); | |
printf(" not recommended: doubles context memory required and no measurable increase in quality\n"); | |
if (llama_mlock_supported()) | |
{ | |
printf(" --mlock force system to keep model in RAM rather than swapping or compressing\n"); | |
} | |
if (llama_mmap_supported()) | |
{ | |
printf(" --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n"); | |
} | |
printf(" --numa attempt optimizations that help on some NUMA systems\n"); | |
printf(" -ngl N, --n-gpu-layers N\n"); | |
printf(" number of layers to store in VRAM\n"); | |
printf(" -ts SPLIT --tensor-split SPLIT\n"); | |
printf(" how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n"); | |
printf(" -mg i, --main-gpu i the GPU to use for scratch and small tensors\n"); | |
printf(" -nommq, --no-mul-mat-q\n"); | |
printf(" use cuBLAS instead of custom mul_mat_q CUDA kernels.\n"); | |
printf(" Not recommended since this is both slower and uses more VRAM.\n"); | |
printf(" -m FNAME, --model FNAME\n"); | |
printf(" model path (default: %s)\n", params.model.c_str()); | |
printf(" -a ALIAS, --alias ALIAS\n"); | |
printf(" set an alias for the model, will be added as `model` field in completion response\n"); | |
printf(" --lora FNAME apply LoRA adapter (implies --no-mmap)\n"); | |
printf(" --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n"); | |
printf(" --host ip address to listen (default (default: %s)\n", sparams.hostname.c_str()); | |
printf(" --port PORT port to listen (default (default: %d)\n", sparams.port); | |
printf(" --path PUBLIC_PATH path from which to serve static files (default %s)\n", sparams.public_path.c_str()); | |
printf(" -to N, --timeout N server read/write timeout in seconds (default: %d)\n", sparams.read_timeout); | |
printf(" --embedding enable embedding vector output (default: %s)\n", params.embedding ? "enabled" : "disabled"); | |
printf("\n"); | |
} | |
static void server_params_parse(int argc, char **argv, server_params &sparams, | |
gpt_params ¶ms) | |
{ | |
gpt_params default_params; | |
server_params default_sparams; | |
std::string arg; | |
bool invalid_param = false; | |
for (int i = 1; i < argc; i++) | |
{ | |
arg = argv[i]; | |
if (arg == "--port") | |
{ | |
if (++i >= argc) | |
{ | |
invalid_param = true; | |
break; | |
} | |
sparams.port = std::stoi(argv[i]); | |
} | |
else if (arg == "--host") | |
{ | |
if (++i >= argc) | |
{ | |
invalid_param = true; | |
break; | |
} | |
sparams.hostname = argv[i]; | |
} | |
else if (arg == "--path") | |
{ | |
if (++i >= argc) | |
{ | |
invalid_param = true; | |
break; | |
} | |
sparams.public_path = argv[i]; | |
} | |
else if (arg == "--timeout" || arg == "-to") | |
{ | |
if (++i >= argc) | |
{ | |
invalid_param = true; | |
break; | |
} | |
sparams.read_timeout = std::stoi(argv[i]); | |
sparams.write_timeout = std::stoi(argv[i]); | |
} | |
else if (arg == "-m" || arg == "--model") | |
{ | |
if (++i >= argc) | |
{ | |
invalid_param = true; | |
break; | |
} | |
params.model = argv[i]; | |
} | |
else if (arg == "-a" || arg == "--alias") | |
{ | |
if (++i >= argc) | |
{ | |
invalid_param = true; | |
break; | |
} | |
params.model_alias = argv[i]; | |
} | |
else if (arg == "-h" || arg == "--help") | |
{ | |
server_print_usage(argv[0], default_params, default_sparams); | |
exit(0); | |
} | |
else if (arg == "-c" || arg == "--ctx-size" || arg == "--ctx_size") | |
{ | |
if (++i >= argc) | |
{ | |
invalid_param = true; | |
break; | |
} | |
params.n_ctx = std::stoi(argv[i]); | |
} | |
else if (arg == "--rope-freq-base") | |
{ | |
if (++i >= argc) | |
{ | |
invalid_param = true; | |
break; | |
} | |
params.rope_freq_base = std::stof(argv[i]); | |
} | |
else if (arg == "--rope-freq-scale") | |
{ | |
if (++i >= argc) | |
{ | |
invalid_param = true; | |
break; | |
} | |
params.rope_freq_scale = std::stof(argv[i]); | |
} | |
else if (arg == "--memory-f32" || arg == "--memory_f32") | |
{ | |
params.memory_f16 = false; | |
} | |
else if (arg == "--threads" || arg == "-t") | |
{ | |
if (++i >= argc) | |
{ | |
invalid_param = true; | |
break; | |
} | |
params.n_threads = std::stoi(argv[i]); | |
} | |
else if (arg == "--threads-batch" || arg == "-tb") | |
{ | |
if (++i >= argc) | |
{ | |
invalid_param = true; | |
break; | |
} | |
params.n_threads_batch = std::stoi(argv[i]); | |
} | |
else if (arg == "-b" || arg == "--batch-size") | |
{ | |
if (++i >= argc) | |
{ | |
invalid_param = true; | |
break; | |
} | |
params.n_batch = std::stoi(argv[i]); | |
params.n_batch = std::min(512, params.n_batch); | |
} | |
else if (arg == "--gpu-layers" || arg == "-ngl" || arg == "--n-gpu-layers") | |
{ | |
if (++i >= argc) | |
{ | |
invalid_param = true; | |
break; | |
} | |
params.n_gpu_layers = std::stoi(argv[i]); | |
LOG_WARNING("Not compiled with GPU offload support, --n-gpu-layers option will be ignored. " | |
"See main README.md for information on enabling GPU BLAS support", | |
{{"n_gpu_layers", params.n_gpu_layers}}); | |
} | |
else if (arg == "--tensor-split" || arg == "-ts") | |
{ | |
if (++i >= argc) | |
{ | |
invalid_param = true; | |
break; | |
} | |
std::string arg_next = argv[i]; | |
// split string by , and / | |
const std::regex regex{R"([,/]+)"}; | |
std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1}; | |
std::vector<std::string> split_arg{it, {}}; | |
GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES); | |
for (size_t i_device = 0; i_device < LLAMA_MAX_DEVICES; ++i_device) | |
{ | |
if (i_device < split_arg.size()) | |
{ | |
params.tensor_split[i_device] = std::stof(split_arg[i_device]); | |
} | |
else | |
{ | |
params.tensor_split[i_device] = 0.0f; | |
} | |
} | |
LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a tensor split.\n", {}); | |
} | |
else if (arg == "--no-mul-mat-q" || arg == "-nommq") | |
{ | |
params.mul_mat_q = false; | |
LOG_WARNING("warning: llama.cpp was compiled without cuBLAS. Disabling mul_mat_q kernels has no effect.\n", {}); | |
} | |
else if (arg == "--main-gpu" || arg == "-mg") | |
{ | |
if (++i >= argc) | |
{ | |
invalid_param = true; | |
break; | |
} | |
params.main_gpu = std::stoi(argv[i]); | |
LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a main GPU.", {}); | |
} | |
else if (arg == "--lora") | |
{ | |
if (++i >= argc) | |
{ | |
invalid_param = true; | |
break; | |
} | |
params.lora_adapter.push_back(std::make_tuple(argv[i], 1.0f)); | |
params.use_mmap = false; | |
} | |
else if (arg == "--lora-scaled") | |
{ | |
if (++i >= argc) | |
{ | |
invalid_param = true; | |
break; | |
} | |
const char * lora_adapter = argv[i]; | |
if (++i >= argc) | |
{ | |
invalid_param = true; | |
break; | |
} | |
params.lora_adapter.push_back(std::make_tuple(lora_adapter, std::stof(argv[i]))); | |
params.use_mmap = false; | |
} | |
else if (arg == "--lora-base") | |
{ | |
if (++i >= argc) | |
{ | |
invalid_param = true; | |
break; | |
} | |
params.lora_base = argv[i]; | |
} | |
else if (arg == "-v" || arg == "--verbose") | |
{ | |
LOG_WARNING("server.cpp is not built with verbose logging.", {}); | |
server_verbose = true; | |
} | |
else if (arg == "--mlock") | |
{ | |
params.use_mlock = true; | |
} | |
else if (arg == "--no-mmap") | |
{ | |
params.use_mmap = false; | |
} | |
else if (arg == "--numa") | |
{ | |
params.numa = true; | |
} | |
else if (arg == "--embedding") | |
{ | |
params.embedding = true; | |
} | |
else | |
{ | |
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str()); | |
server_print_usage(argv[0], default_params, default_sparams); | |
exit(1); | |
} | |
} | |
if (invalid_param) | |
{ | |
fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str()); | |
server_print_usage(argv[0], default_params, default_sparams); | |
exit(1); | |
} | |
} | |
static json format_generation_settings(llama_server_context &llama) | |
{ | |
const auto & sparams = llama.params.sampling_params; | |
const auto eos_bias = sparams.logit_bias.find(llama_token_eos(llama.ctx)); | |
const bool ignore_eos = eos_bias != sparams.logit_bias.end() && | |
eos_bias->second < 0.0f && std::isinf(eos_bias->second); | |
return json{ | |
{"n_ctx", llama.n_ctx}, | |
{"model", llama.params.model_alias}, | |
{"seed", llama.params.seed}, | |
{"temp", sparams.temp}, | |
{"top_k", sparams.top_k}, | |
{"top_p", sparams.top_p}, | |
{"tfs_z", sparams.tfs_z}, | |
{"typical_p", sparams.typical_p}, | |
{"repeat_last_n", sparams.repeat_last_n}, | |
{"repeat_penalty", sparams.repeat_penalty}, | |
{"presence_penalty", sparams.presence_penalty}, | |
{"frequency_penalty", sparams.frequency_penalty}, | |
{"mirostat", sparams.mirostat}, | |
{"mirostat_tau", sparams.mirostat_tau}, | |
{"mirostat_eta", sparams.mirostat_eta}, | |
{"penalize_nl", sparams.penalize_nl}, | |
{"stop", llama.params.antiprompt}, | |
{"n_predict", llama.params.n_predict}, | |
{"n_keep", llama.params.n_keep}, | |
{"ignore_eos", ignore_eos}, | |
{"stream", llama.stream}, | |
{"logit_bias", sparams.logit_bias}, | |
{"n_probs", sparams.n_probs}, | |
{"grammar", llama.params.grammar}, | |
}; | |
} | |
static json format_embedding_response(llama_server_context &llama) | |
{ | |
return json{ | |
{"embedding", llama.getEmbedding()}, | |
}; | |
} | |
static json format_timings(llama_server_context &llama) | |
{ | |
const auto timings = llama_get_timings(llama.ctx); | |
return json{ | |
{"prompt_n", timings.n_p_eval}, | |
{"prompt_ms", timings.t_p_eval_ms}, | |
{"prompt_per_token_ms", timings.t_p_eval_ms / timings.n_p_eval}, | |
{"prompt_per_second", 1e3 / timings.t_p_eval_ms * timings.n_p_eval}, | |
{"predicted_n", timings.n_eval}, | |
{"predicted_ms", timings.t_eval_ms}, | |
{"predicted_per_token_ms", timings.t_eval_ms / timings.n_eval}, | |
{"predicted_per_second", 1e3 / timings.t_eval_ms * timings.n_eval}, | |
}; | |
} | |
static json format_final_response(llama_server_context &llama, const std::string &content, const std::vector<completion_token_output> &probs) | |
{ | |
json res = json{ | |
{"content", content}, | |
{"stop", true}, | |
{"model", llama.params.model_alias}, | |
{"tokens_predicted", llama.num_tokens_predicted}, | |
{"tokens_evaluated", llama.num_prompt_tokens}, | |
{"generation_settings", format_generation_settings(llama)}, | |
{"prompt", llama.prompt}, | |
{"truncated", llama.truncated}, | |
{"stopped_eos", llama.stopped_eos}, | |
{"stopped_word", llama.stopped_word}, | |
{"stopped_limit", llama.stopped_limit}, | |
{"stopping_word", llama.stopping_word}, | |
{"tokens_cached", llama.n_past}, | |
{"timings", format_timings(llama)}, | |
}; | |
if (llama.params.sampling_params.n_probs > 0) | |
{ | |
res["completion_probabilities"] = probs_vector_to_json(llama.ctx, probs); | |
} | |
return res; | |
} | |
static json format_partial_response( | |
llama_server_context &llama, const std::string &content, const std::vector<completion_token_output> &probs | |
) { | |
json res = json{ | |
{"content", content}, | |
{"stop", false}, | |
}; | |
if (llama.params.sampling_params.n_probs > 0) | |
{ | |
res["completion_probabilities"] = probs_vector_to_json(llama.ctx, probs); | |
} | |
return res; | |
} | |
static json format_tokenizer_response(const std::vector<llama_token> &tokens) | |
{ | |
return json{ | |
{"tokens", tokens}}; | |
} | |
static json format_detokenized_response(std::string content) | |
{ | |
return json{ | |
{"content", content}}; | |
} | |
template <typename T> | |
static T json_value(const json &body, const std::string &key, const T &default_value) | |
{ | |
// Fallback null to default value | |
return body.contains(key) && !body.at(key).is_null() | |
? body.value(key, default_value) | |
: default_value; | |
} | |
static void parse_options_completion(const json &body, llama_server_context &llama) | |
{ | |
gpt_params default_params; | |
const auto & default_sparams = default_params.sampling_params; | |
auto & sparams = llama.params.sampling_params; | |
llama.stream = json_value(body, "stream", false); | |
llama.params.n_predict = json_value(body, "n_predict", default_params.n_predict); | |
sparams.top_k = json_value(body, "top_k", default_sparams.top_k); | |
sparams.top_p = json_value(body, "top_p", default_sparams.top_p); | |
sparams.tfs_z = json_value(body, "tfs_z", default_sparams.tfs_z); | |
sparams.typical_p = json_value(body, "typical_p", default_sparams.typical_p); | |
sparams.repeat_last_n = json_value(body, "repeat_last_n", default_sparams.repeat_last_n); | |
sparams.temp = json_value(body, "temperature", default_sparams.temp); | |
sparams.repeat_penalty = json_value(body, "repeat_penalty", default_sparams.repeat_penalty); | |
sparams.presence_penalty = json_value(body, "presence_penalty", default_sparams.presence_penalty); | |
sparams.frequency_penalty = json_value(body, "frequency_penalty", default_sparams.frequency_penalty); | |
sparams.mirostat = json_value(body, "mirostat", default_sparams.mirostat); | |
sparams.mirostat_tau = json_value(body, "mirostat_tau", default_sparams.mirostat_tau); | |
sparams.mirostat_eta = json_value(body, "mirostat_eta", default_sparams.mirostat_eta); | |
sparams.penalize_nl = json_value(body, "penalize_nl", default_sparams.penalize_nl); | |
llama.params.n_keep = json_value(body, "n_keep", default_params.n_keep); | |
llama.params.seed = json_value(body, "seed", default_params.seed); | |
llama.params.grammar = json_value(body, "grammar", default_params.grammar); | |
sparams.n_probs = json_value(body, "n_probs", default_sparams.n_probs); | |
if (body.count("prompt") != 0) | |
{ | |
llama.prompt = body["prompt"]; | |
} | |
else | |
{ | |
llama.prompt = ""; | |
} | |
sparams.logit_bias.clear(); | |
if (json_value(body, "ignore_eos", false)) | |
{ | |
sparams.logit_bias[llama_token_eos(llama.ctx)] = -INFINITY; | |
} | |
const auto &logit_bias = body.find("logit_bias"); | |
if (logit_bias != body.end() && logit_bias->is_array()) | |
{ | |
const int n_vocab = llama_n_vocab(llama.model); | |
for (const auto &el : *logit_bias) | |
{ | |
if (el.is_array() && el.size() == 2 && el[0].is_number_integer()) | |
{ | |
llama_token tok = el[0].get<llama_token>(); | |
if (tok >= 0 && tok < n_vocab) | |
{ | |
if (el[1].is_number()) | |
{ | |
sparams.logit_bias[tok] = el[1].get<float>(); | |
} | |
else if (el[1].is_boolean() && !el[1].get<bool>()) | |
{ | |
sparams.logit_bias[tok] = -INFINITY; | |
} | |
} | |
} | |
} | |
} | |
llama.params.antiprompt.clear(); | |
const auto &stop = body.find("stop"); | |
if (stop != body.end() && stop->is_array()) | |
{ | |
for (const auto &word : *stop) | |
{ | |
if (!word.empty()) | |
{ | |
llama.params.antiprompt.push_back(word); | |
} | |
} | |
} | |
llama.ctx_sampling = llama_sampling_context_init(llama.params, llama.grammar); | |
LOG_VERBOSE("completion parameters parsed", format_generation_settings(llama)); | |
} | |
static void parse_options_infill(const json &body, llama_server_context &llama) | |
{ | |
if (body.count("input_prefix") != 0) | |
{ | |
llama.params.input_prefix = body["input_prefix"]; | |
} | |
else | |
{ | |
llama.params.input_prefix = ""; | |
} | |
if (body.count("input_suffix") != 0) | |
{ | |
llama.params.input_suffix = body["input_suffix"]; | |
} | |
else | |
{ | |
llama.params.input_suffix = ""; | |
} | |
parse_options_completion(body, llama); | |
} | |
static void log_server_request(const Request &req, const Response &res) | |
{ | |
LOG_INFO("request", { | |
{"remote_addr", req.remote_addr}, | |
{"remote_port", req.remote_port}, | |
{"status", res.status}, | |
{"method", req.method}, | |
{"path", req.path}, | |
{"params", req.params}, | |
}); | |
LOG_VERBOSE("request", { | |
{"request", req.body}, | |
{"response", res.body}, | |
}); | |
} | |
static bool is_at_eob(llama_server_context &server_context, const llama_token *tokens, const size_t n_tokens) { | |
return n_tokens && tokens[n_tokens-1] == llama_token_eos(server_context.ctx); | |
} | |
// Function matching type llama_beam_search_callback_fn_t. | |
// Custom callback example is called each time the beams lengths increase: | |
// * Show progress by printing ',' following by number of convergent beam tokens if any. | |
// * When all beams converge to a common prefix, they are made available in beams_state.beams[0]. | |
// This is also called when the stop condition is met. | |
// Collect tokens into std::vector<llama_token> response which is pointed to by callback_data. | |
static void beam_search_callback(void *callback_data, llama_beams_state beams_state) { | |
auto & llama = *static_cast<llama_server_context*>(callback_data); | |
// Mark beams as EOS as needed. | |
for (size_t i = 0 ; i < beams_state.n_beams ; ++i) { | |
llama_beam_view& beam_view = beams_state.beam_views[i]; | |
if (!beam_view.eob && is_at_eob(llama, beam_view.tokens, beam_view.n_tokens)) { | |
beam_view.eob = true; | |
} | |
} | |
printf(","); // Show progress | |
if (const size_t n = beams_state.common_prefix_length) { | |
llama.generated_token_probs.resize(llama.generated_token_probs.size() + n); | |
assert(0u < beams_state.n_beams); | |
const llama_token * tokens = beams_state.beam_views[0].tokens; | |
const auto map = [](llama_token tok) { return completion_token_output{{},tok}; }; | |
std::transform(tokens, tokens + n, llama.generated_token_probs.end() - n, map); | |
printf("%zu", n); | |
} | |
fflush(stdout); | |
std::cout << "\n\nCurrent beams:\n"; | |
for (size_t i=0 ; i < beams_state.n_beams ; ++i) { | |
std::cout << "beams["<<i<<"]: " << ostream_beam_view{state.ctx,beams_state.beam_views[i]} << std::endl; | |
} | |
} | |
struct token_translator { | |
llama_context * ctx; | |
std::string operator()(llama_token tok) const { return llama_token_to_piece(ctx, tok); } | |
std::string operator()(const completion_token_output & cto) const { return (*this)(cto.tok); } | |
}; | |
static void append_to_generated_text_from_generated_token_probs(llama_server_context &llama) | |
{ | |
auto & gtps = llama.generated_token_probs; | |
auto translator = token_translator{llama.ctx}; | |
auto add_strlen = [=](size_t sum, const completion_token_output & cto) { return sum + translator(cto).size(); }; | |
const size_t len = std::accumulate(gtps.begin(), gtps.end(), size_t(0), add_strlen); | |
if (llama.generated_text.capacity() < llama.generated_text.size() + len) { | |
llama.generated_text.reserve(llama.generated_text.size() + len); | |
} | |
for (const completion_token_output & cto : gtps) { | |
llama.generated_text += translator(cto); | |
} | |
} | |
int main(int argc, char **argv) | |
{ | |
// own arguments required by this example | |
gpt_params params; | |
server_params sparams; | |
// struct that contains llama context and inference | |
llama_server_context llama; | |
server_params_parse(argc, argv, sparams, params); | |
if (params.model_alias == "unknown") | |
{ | |
params.model_alias = params.model; | |
} | |
llama_backend_init(params.numa); | |
LOG_INFO("build info", {{"build", BUILD_NUMBER}, | |
{"commit", BUILD_COMMIT}}); | |
LOG_INFO("system info", { | |
{"n_threads", params.n_threads}, | |
{"n_threads_batch", params.n_threads_batch}, | |
{"total_threads", std::thread::hardware_concurrency()}, | |
{"system_info", llama_print_system_info()}, | |
}); | |
// load the model | |
if (!llama.loadModel(params)) | |
{ | |
return 1; | |
} | |
Server svr; | |
svr.set_default_headers({{"Server", "llama.cpp"}, | |
{"Access-Control-Allow-Origin", "*"}, | |
{"Access-Control-Allow-Headers", "content-type"}}); | |
// this is only called if no index.html is found in the public --path | |
svr.Get("/", [](const Request &, Response &res) | |
{ | |
res.set_content(reinterpret_cast<const char*>(&index_html), index_html_len, "text/html"); | |
return false; }); | |
// this is only called if no index.js is found in the public --path | |
svr.Get("/index.js", [](const Request &, Response &res) | |
{ | |
res.set_content(reinterpret_cast<const char *>(&index_js), index_js_len, "text/javascript"); | |
return false; }); | |
// this is only called if no index.html is found in the public --path | |
svr.Get("/completion.js", [](const Request &, Response &res) | |
{ | |
res.set_content(reinterpret_cast<const char*>(&completion_js), completion_js_len, "application/javascript"); | |
return false; }); | |
// this is only called if no index.html is found in the public --path | |
svr.Get("/json-schema-to-grammar.mjs", [](const Request &, Response &res) | |
{ | |
res.set_content(reinterpret_cast<const char*>(&json_schema_to_grammar_mjs), json_schema_to_grammar_mjs_len, "application/javascript"); | |
return false; }); | |
svr.Post("/completion", [&llama](const Request &req, Response &res) | |
{ | |
auto lock = llama.lock(); | |
llama.rewind(); | |
llama_reset_timings(llama.ctx); | |
parse_options_completion(json::parse(req.body), llama); | |
if (!llama.loadGrammar()) | |
{ | |
res.status = 400; | |
return; | |
} | |
llama.loadPrompt(); | |
llama.beginCompletion(); | |
if (!llama.stream) { | |
if (llama.params.n_beams) { | |
// Fill llama.generated_token_probs vector with final beam. | |
llama_beam_search(llama.ctx, beam_search_callback, &llama, llama.params.n_beams, | |
llama.n_past, llama.n_remain); | |
// Translate llama.generated_token_probs to llama.generated_text. | |
append_to_generated_text_from_generated_token_probs(llama); | |
} else { | |
size_t stop_pos = std::string::npos; | |
while (llama.has_next_token) { | |
const completion_token_output token_with_probs = llama.doCompletion(); | |
const std::string token_text = token_with_probs.tok == -1 ? "" : llama_token_to_piece(llama.ctx, token_with_probs.tok); | |
stop_pos = llama.findStoppingStrings(llama.generated_text, | |
token_text.size(), STOP_FULL); | |
} | |
if (stop_pos == std::string::npos) { | |
stop_pos = llama.findStoppingStrings(llama.generated_text, 0, STOP_PARTIAL); | |
} | |
if (stop_pos != std::string::npos) { | |
llama.generated_text.erase(llama.generated_text.begin() + stop_pos, | |
llama.generated_text.end()); | |
} | |
} | |
auto probs = llama.generated_token_probs; | |
if (llama.params.sampling_params.n_probs > 0 && llama.stopped_word) { | |
const std::vector<llama_token> stop_word_toks = llama_tokenize(llama.ctx, llama.stopping_word, false); | |
probs = std::vector<completion_token_output>(llama.generated_token_probs.begin(), llama.generated_token_probs.end() - stop_word_toks.size()); | |
} | |
const json data = format_final_response(llama, llama.generated_text, probs); | |
llama_print_timings(llama.ctx); | |
res.set_content(data.dump(-1, ' ', false, json::error_handler_t::replace), | |
"application/json"); | |
} else { | |
const auto chunked_content_provider = [&](size_t, DataSink & sink) { | |
size_t sent_count = 0; | |
size_t sent_token_probs_index = 0; | |
while (llama.has_next_token) { | |
const completion_token_output token_with_probs = llama.doCompletion(); | |
if (token_with_probs.tok == -1 || llama.multibyte_pending > 0) { | |
continue; | |
} | |
const std::string token_text = llama_token_to_piece(llama.ctx, token_with_probs.tok); | |
size_t pos = std::min(sent_count, llama.generated_text.size()); | |
const std::string str_test = llama.generated_text.substr(pos); | |
bool is_stop_full = false; | |
size_t stop_pos = | |
llama.findStoppingStrings(str_test, token_text.size(), STOP_FULL); | |
if (stop_pos != std::string::npos) { | |
is_stop_full = true; | |
llama.generated_text.erase( | |
llama.generated_text.begin() + pos + stop_pos, | |
llama.generated_text.end()); | |
pos = std::min(sent_count, llama.generated_text.size()); | |
} else { | |
is_stop_full = false; | |
stop_pos = llama.findStoppingStrings(str_test, token_text.size(), | |
STOP_PARTIAL); | |
} | |
if ( | |
stop_pos == std::string::npos || | |
// Send rest of the text if we are at the end of the generation | |
(!llama.has_next_token && !is_stop_full && stop_pos > 0) | |
) { | |
const std::string to_send = llama.generated_text.substr(pos, std::string::npos); | |
sent_count += to_send.size(); | |
std::vector<completion_token_output> probs_output = {}; | |
if (llama.params.sampling_params.n_probs > 0) { | |
const std::vector<llama_token> to_send_toks = llama_tokenize(llama.ctx, to_send, false); | |
size_t probs_pos = std::min(sent_token_probs_index, llama.generated_token_probs.size()); | |
size_t probs_stop_pos = std::min(sent_token_probs_index + to_send_toks.size(), llama.generated_token_probs.size()); | |
if (probs_pos < probs_stop_pos) { | |
probs_output = std::vector<completion_token_output>(llama.generated_token_probs.begin() + probs_pos, llama.generated_token_probs.begin() + probs_stop_pos); | |
} | |
sent_token_probs_index = probs_stop_pos; | |
} | |
const json data = format_partial_response(llama, to_send, probs_output); | |
const std::string str = | |
"data: " + | |
data.dump(-1, ' ', false, json::error_handler_t::replace) + | |
"\n\n"; | |
LOG_VERBOSE("data stream", { | |
{ "to_send", str } | |
}); | |
if (!sink.write(str.data(), str.size())) { | |
LOG_VERBOSE("stream closed", {}); | |
llama_print_timings(llama.ctx); | |
return false; | |
} | |
} | |
if (!llama.has_next_token) { | |
// Generation is done, send extra information. | |
const json data = format_final_response( | |
llama, | |
"", | |
std::vector<completion_token_output>(llama.generated_token_probs.begin(), llama.generated_token_probs.begin() + sent_token_probs_index) | |
); | |
const std::string str = | |
"data: " + | |
data.dump(-1, ' ', false, json::error_handler_t::replace) + | |
"\n\n"; | |
LOG_VERBOSE("data stream", { | |
{ "to_send", str } | |
}); | |
if (!sink.write(str.data(), str.size())) { | |
LOG_VERBOSE("stream closed", {}); | |
llama_print_timings(llama.ctx); | |
return false; | |
} | |
} | |
} | |
llama_print_timings(llama.ctx); | |
sink.done(); | |
return true; | |
}; | |
const auto on_complete = [&](bool) { | |
llama.mutex.unlock(); | |
}; | |
lock.release(); | |
res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete); | |
} }); | |
svr.Post("/infill", [&llama](const Request &req, Response &res) | |
{ | |
auto lock = llama.lock(); | |
llama.rewind(); | |
llama_reset_timings(llama.ctx); | |
parse_options_infill(json::parse(req.body), llama); | |
if (!llama.loadGrammar()) | |
{ | |
res.status = 400; | |
return; | |
} | |
llama.loadInfill(); | |
llama.beginCompletion(); | |
const auto chunked_content_provider = [&](size_t, DataSink & sink) { | |
size_t sent_count = 0; | |
size_t sent_token_probs_index = 0; | |
while (llama.has_next_token) { | |
const completion_token_output token_with_probs = llama.doCompletion(); | |
if (token_with_probs.tok == -1 || llama.multibyte_pending > 0) { | |
continue; | |
} | |
const std::string token_text = llama_token_to_piece(llama.ctx, token_with_probs.tok); | |
size_t pos = std::min(sent_count, llama.generated_text.size()); | |
const std::string str_test = llama.generated_text.substr(pos); | |
bool is_stop_full = false; | |
size_t stop_pos = | |
llama.findStoppingStrings(str_test, token_text.size(), STOP_FULL); | |
if (stop_pos != std::string::npos) { | |
is_stop_full = true; | |
llama.generated_text.erase( | |
llama.generated_text.begin() + pos + stop_pos, | |
llama.generated_text.end()); | |
pos = std::min(sent_count, llama.generated_text.size()); | |
} else { | |
is_stop_full = false; | |
stop_pos = llama.findStoppingStrings(str_test, token_text.size(), | |
STOP_PARTIAL); | |
} | |
if ( | |
stop_pos == std::string::npos || | |
// Send rest of the text if we are at the end of the generation | |
(!llama.has_next_token && !is_stop_full && stop_pos > 0) | |
) { | |
const std::string to_send = llama.generated_text.substr(pos, std::string::npos); | |
sent_count += to_send.size(); | |
std::vector<completion_token_output> probs_output = {}; | |
if (llama.params.sampling_params.n_probs > 0) { | |
const std::vector<llama_token> to_send_toks = llama_tokenize(llama.ctx, to_send, false); | |
size_t probs_pos = std::min(sent_token_probs_index, llama.generated_token_probs.size()); | |
size_t probs_stop_pos = std::min(sent_token_probs_index + to_send_toks.size(), llama.generated_token_probs.size()); | |
if (probs_pos < probs_stop_pos) { | |
probs_output = std::vector<completion_token_output>(llama.generated_token_probs.begin() + probs_pos, llama.generated_token_probs.begin() + probs_stop_pos); | |
} | |
sent_token_probs_index = probs_stop_pos; | |
} | |
const json data = format_partial_response(llama, to_send, probs_output); | |
const std::string str = | |
"data: " + | |
data.dump(-1, ' ', false, json::error_handler_t::replace) + | |
"\n\n"; | |
LOG_VERBOSE("data stream", { | |
{ "to_send", str } | |
}); | |
if (!sink.write(str.data(), str.size())) { | |
LOG_VERBOSE("stream closed", {}); | |
llama_print_timings(llama.ctx); | |
return false; | |
} | |
} | |
if (!llama.has_next_token) { | |
// Generation is done, send extra information. | |
const json data = format_final_response( | |
llama, | |
"", | |
std::vector<completion_token_output>(llama.generated_token_probs.begin(), llama.generated_token_probs.begin() + sent_token_probs_index) | |
); | |
const std::string str = | |
"data: " + | |
data.dump(-1, ' ', false, json::error_handler_t::replace) + | |
"\n\n"; | |
LOG_VERBOSE("data stream", { | |
{ "to_send", str } | |
}); | |
if (!sink.write(str.data(), str.size())) { | |
LOG_VERBOSE("stream closed", {}); | |
llama_print_timings(llama.ctx); | |
return false; | |
} | |
} | |
} | |
llama_print_timings(llama.ctx); | |
sink.done(); | |
return true; | |
}; | |
const auto on_complete = [&](bool) { | |
llama.mutex.unlock(); | |
}; | |
lock.release(); | |
res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete); | |
}); | |
svr.Get("/model.json", [&llama](const Request &, Response &res) | |
{ | |
const json data = format_generation_settings(llama); | |
return res.set_content(data.dump(), "application/json"); }); | |
svr.Options(R"(/.*)", [](const Request &, Response &res) | |
{ return res.set_content("", "application/json"); }); | |
svr.Post("/tokenize", [&llama](const Request &req, Response &res) | |
{ | |
auto lock = llama.lock(); | |
const json body = json::parse(req.body); | |
std::vector<llama_token> tokens; | |
if (body.count("content") != 0) | |
{ | |
tokens = llama.tokenize(body["content"], false); | |
} | |
const json data = format_tokenizer_response(tokens); | |
return res.set_content(data.dump(), "application/json"); }); | |
svr.Post("/detokenize", [&llama](const Request &req, Response &res) | |
{ | |
auto lock = llama.lock(); | |
const json body = json::parse(req.body); | |
std::string content; | |
if (body.count("tokens") != 0) | |
{ | |
const std::vector<llama_token> tokens = body["tokens"]; | |
content = tokens_to_str(llama.ctx, tokens.cbegin(), tokens.cend()); | |
} | |
const json data = format_detokenized_response(content); | |
return res.set_content(data.dump(), "application/json"); }); | |
svr.Post("/embedding", [&llama](const Request &req, Response &res) | |
{ | |
auto lock = llama.lock(); | |
const json body = json::parse(req.body); | |
llama.rewind(); | |
llama_reset_timings(llama.ctx); | |
if (body.count("content") != 0) | |
{ | |
llama.prompt = body["content"]; | |
} | |
else | |
{ | |
llama.prompt = ""; | |
} | |
llama.params.n_predict = 0; | |
llama.loadPrompt(); | |
llama.beginCompletion(); | |
llama.doCompletion(); | |
const json data = format_embedding_response(llama); | |
return res.set_content(data.dump(), "application/json"); }); | |
svr.set_logger(log_server_request); | |
svr.set_exception_handler([](const Request &, Response &res, std::exception_ptr ep) | |
{ | |
const char fmt[] = "500 Internal Server Error\n%s"; | |
char buf[BUFSIZ]; | |
try { | |
std::rethrow_exception(std::move(ep)); | |
} catch (std::exception & e) { | |
snprintf(buf, sizeof(buf), fmt, e.what()); | |
} catch (...) { | |
snprintf(buf, sizeof(buf), fmt, "Unknown Exception"); | |
} | |
res.set_content(buf, "text/plain"); | |
res.status = 500; }); | |
svr.set_error_handler([](const Request &, Response &res) | |
{ | |
if (res.status == 400) { | |
res.set_content("Invalid request", "text/plain"); | |
} else if (res.status != 500) { | |
res.set_content("File Not Found", "text/plain"); | |
res.status = 404; | |
} }); | |
// set timeouts and change hostname and port | |
svr.set_read_timeout(sparams.read_timeout); | |
svr.set_write_timeout(sparams.write_timeout); | |
if (!svr.bind_to_port(sparams.hostname, sparams.port)) | |
{ | |
fprintf(stderr, "\ncouldn't bind to server socket: hostname=%s port=%d\n\n", sparams.hostname.c_str(), sparams.port); | |
return 1; | |
} | |
// Set the base directory for serving static files | |
svr.set_base_dir(sparams.public_path); | |
// to make it ctrl+clickable: | |
printf("\nllama server listening at http://%s:%d\n\n", sparams.hostname.c_str(), sparams.port); | |
LOG_INFO("HTTP server listening", { | |
{"hostname", sparams.hostname}, | |
{"port", sparams.port}, | |
}); | |
if (!svr.listen_after_bind()) | |
{ | |
return 1; | |
} | |
if (llama.grammar != nullptr) { | |
llama_grammar_free(llama.grammar); | |
} | |
llama_backend_free(); | |
return 0; | |
} | |