Spaces:
Build error
Build error
static llama_context ** g_ctx; | |
static llama_model ** g_model; | |
static gpt_params * g_params; | |
static std::vector<llama_token> * g_input_tokens; | |
static std::ostringstream * g_output_ss; | |
static std::vector<llama_token> * g_output_tokens; | |
static bool is_interacting = false; | |
static void write_logfile( | |
const llama_context * ctx, const gpt_params & params, const llama_model * model, | |
const std::vector<llama_token> & input_tokens, const std::string & output, | |
const std::vector<llama_token> & output_tokens | |
) { | |
if (params.logdir.empty()) { | |
return; | |
} | |
const std::string timestamp = get_sortable_timestamp(); | |
const bool success = create_directory_with_parents(params.logdir); | |
if (!success) { | |
fprintf(stderr, "%s: warning: failed to create logdir %s, cannot write logfile\n", | |
__func__, params.logdir.c_str()); | |
return; | |
} | |
const std::string logfile_path = params.logdir + timestamp + ".yml"; | |
FILE * logfile = fopen(logfile_path.c_str(), "w"); | |
if (logfile == NULL) { | |
fprintf(stderr, "%s: failed to open logfile %s\n", __func__, logfile_path.c_str()); | |
return; | |
} | |
fprintf(logfile, "binary: main\n"); | |
char model_desc[128]; | |
llama_model_desc(model, model_desc, sizeof(model_desc)); | |
dump_non_result_info_yaml(logfile, params, ctx, timestamp, input_tokens, model_desc); | |
fprintf(logfile, "\n"); | |
fprintf(logfile, "######################\n"); | |
fprintf(logfile, "# Generation Results #\n"); | |
fprintf(logfile, "######################\n"); | |
fprintf(logfile, "\n"); | |
dump_string_yaml_multiline(logfile, "output", output.c_str()); | |
dump_vector_int_yaml(logfile, "output_tokens", output_tokens); | |
llama_dump_timing_info_yaml(logfile, ctx); | |
fclose(logfile); | |
} | |
static void sigint_handler(int signo) { | |
if (signo == SIGINT) { | |
if (!is_interacting) { | |
is_interacting = true; | |
} else { | |
console::cleanup(); | |
printf("\n"); | |
llama_print_timings(*g_ctx); | |
write_logfile(*g_ctx, *g_params, *g_model, *g_input_tokens, g_output_ss->str(), *g_output_tokens); | |
_exit(130); | |
} | |
} | |
} | |
int main(int argc, char ** argv) { | |
gpt_params params; | |
g_params = ¶ms; | |
if (!gpt_params_parse(argc, argv, params)) { | |
return 1; | |
} | |
llama_sampling_params & sparams = params.sampling_params; | |
log_set_target(log_filename_generator("main", "log")); | |
LOG_TEE("Log start\n"); | |
log_dump_cmdline(argc, argv); | |
// TODO: Dump params ? | |
//LOG("Params perplexity: %s\n", LOG_TOSTR(params.perplexity)); | |
// save choice to use color for later | |
// (note for later: this is a slightly awkward choice) | |
console::init(params.simple_io, params.use_color); | |
atexit([]() { console::cleanup(); }); | |
if (params.logits_all) { | |
printf("\n************\n"); | |
printf("%s: please use the 'perplexity' tool for perplexity calculations\n", __func__); | |
printf("************\n\n"); | |
return 0; | |
} | |
if (params.embedding) { | |
printf("\n************\n"); | |
printf("%s: please use the 'embedding' tool for embedding calculations\n", __func__); | |
printf("************\n\n"); | |
return 0; | |
} | |
if (params.n_ctx != 0 && params.n_ctx < 8) { | |
LOG_TEE("%s: warning: minimum context size is 8, using minimum size.\n", __func__); | |
params.n_ctx = 8; | |
} | |
if (params.rope_freq_base != 0.0) { | |
LOG_TEE("%s: warning: changing RoPE frequency base to %g.\n", __func__, params.rope_freq_base); | |
} | |
if (params.rope_freq_scale != 0.0) { | |
LOG_TEE("%s: warning: scaling RoPE frequency by %g.\n", __func__, params.rope_freq_scale); | |
} | |
LOG_TEE("%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT); | |
LOG_TEE("%s: built with %s for %s\n", __func__, BUILD_COMPILER, BUILD_TARGET); | |
if (params.seed == LLAMA_DEFAULT_SEED) { | |
params.seed = time(NULL); | |
} | |
LOG_TEE("%s: seed = %u\n", __func__, params.seed); | |
std::mt19937 rng(params.seed); | |
if (params.random_prompt) { | |
params.prompt = gpt_random_prompt(rng); | |
} | |
LOG("%s: llama backend init\n", __func__); | |
llama_backend_init(params.numa); | |
llama_model * model; | |
llama_context * ctx; | |
llama_context * ctx_guidance = NULL; | |
g_model = &model; | |
g_ctx = &ctx; | |
// load the model and apply lora adapter, if any | |
LOG("%s: load the model and apply lora adapter, if any\n", __func__); | |
std::tie(model, ctx) = llama_init_from_gpt_params(params); | |
if (sparams.cfg_scale > 1.f) { | |
struct llama_context_params lparams = llama_context_params_from_gpt_params(params); | |
ctx_guidance = llama_new_context_with_model(model, lparams); | |
} | |
if (model == NULL) { | |
LOG_TEE("%s: error: unable to load model\n", __func__); | |
return 1; | |
} | |
const int n_ctx_train = llama_n_ctx_train(model); | |
const int n_ctx = llama_n_ctx(ctx); | |
LOG("n_ctx: %d\n", n_ctx); | |
if (n_ctx > n_ctx_train) { | |
LOG_TEE("%s: warning: model was trained on only %d context tokens (%d specified)\n", | |
__func__, n_ctx_train, n_ctx); | |
} | |
// print system information | |
{ | |
LOG_TEE("\n"); | |
LOG_TEE("%s\n", get_system_info(params).c_str()); | |
} | |
std::string path_session = params.path_prompt_cache; | |
std::vector<llama_token> session_tokens; | |
if (!path_session.empty()) { | |
LOG_TEE("%s: attempting to load saved session from '%s'\n", __func__, path_session.c_str()); | |
// fopen to check for existing session | |
FILE * fp = std::fopen(path_session.c_str(), "rb"); | |
if (fp != NULL) { | |
std::fclose(fp); | |
session_tokens.resize(n_ctx); | |
size_t n_token_count_out = 0; | |
if (!llama_load_session_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.capacity(), &n_token_count_out)) { | |
LOG_TEE("%s: error: failed to load session file '%s'\n", __func__, path_session.c_str()); | |
return 1; | |
} | |
session_tokens.resize(n_token_count_out); | |
llama_set_rng_seed(ctx, params.seed); | |
LOG_TEE("%s: loaded a session with prompt size of %d tokens\n", __func__, (int) session_tokens.size()); | |
} else { | |
LOG_TEE("%s: session file does not exist, will create\n", __func__); | |
} | |
} | |
const bool add_bos = llama_vocab_type(model) == LLAMA_VOCAB_TYPE_SPM; | |
LOG("add_bos: %d\n", add_bos); | |
std::vector<llama_token> embd_inp; | |
if (params.interactive_first || params.instruct || !params.prompt.empty() || session_tokens.empty()) { | |
LOG("tokenize the prompt\n"); | |
embd_inp = ::llama_tokenize(ctx, params.prompt, add_bos); | |
} else { | |
LOG("use session tokens\n"); | |
embd_inp = session_tokens; | |
} | |
LOG("prompt: \"%s\"\n", log_tostr(params.prompt)); | |
LOG("tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp)); | |
// Should not run without any tokens | |
if (embd_inp.empty()) { | |
embd_inp.push_back(llama_token_bos(ctx)); | |
LOG("embd_inp was considered empty and bos was added: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp)); | |
} | |
// Tokenize negative prompt | |
std::vector<llama_token> guidance_inp; | |
int guidance_offset = 0; | |
int original_prompt_len = 0; | |
if (ctx_guidance) { | |
LOG("cfg_negative_prompt: \"%s\"\n", log_tostr(sparams.cfg_negative_prompt)); | |
guidance_inp = ::llama_tokenize(ctx_guidance, sparams.cfg_negative_prompt, add_bos); | |
LOG("guidance_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_guidance, guidance_inp)); | |
std::vector<llama_token> original_inp = ::llama_tokenize(ctx, params.prompt, add_bos); | |
LOG("original_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, original_inp)); | |
original_prompt_len = original_inp.size(); | |
guidance_offset = (int)guidance_inp.size() - original_prompt_len; | |
LOG("original_prompt_len: %s", log_tostr(original_prompt_len)); | |
LOG("guidance_offset: %s", log_tostr(guidance_offset)); | |
} | |
if ((int) embd_inp.size() > n_ctx - 4) { | |
LOG_TEE("%s: error: prompt is too long (%d tokens, max %d)\n", __func__, (int) embd_inp.size(), n_ctx - 4); | |
return 1; | |
} | |
// debug message about similarity of saved session, if applicable | |
size_t n_matching_session_tokens = 0; | |
if (!session_tokens.empty()) { | |
for (llama_token id : session_tokens) { | |
if (n_matching_session_tokens >= embd_inp.size() || id != embd_inp[n_matching_session_tokens]) { | |
break; | |
} | |
n_matching_session_tokens++; | |
} | |
if (params.prompt.empty() && n_matching_session_tokens == embd_inp.size()) { | |
LOG_TEE("%s: using full prompt from session file\n", __func__); | |
} else if (n_matching_session_tokens >= embd_inp.size()) { | |
LOG_TEE("%s: session file has exact match for prompt!\n", __func__); | |
} else if (n_matching_session_tokens < (embd_inp.size() / 2)) { | |
LOG_TEE("%s: warning: session file has low similarity to prompt (%zu / %zu tokens); will mostly be reevaluated\n", | |
__func__, n_matching_session_tokens, embd_inp.size()); | |
} else { | |
LOG_TEE("%s: session file matches %zu / %zu tokens of prompt\n", | |
__func__, n_matching_session_tokens, embd_inp.size()); | |
} | |
// remove any "future" tokens that we might have inherited from the previous session | |
llama_kv_cache_tokens_rm(ctx, n_matching_session_tokens, -1); | |
} | |
LOGLN( | |
"recalculate the cached logits (check): embd_inp.empty() %s, n_matching_session_tokens %zu, embd_inp.size() %zu, session_tokens.size() %zu, embd_inp.size() %zu", | |
log_tostr(embd_inp.empty()), n_matching_session_tokens, embd_inp.size(), session_tokens.size(), embd_inp.size()); | |
// if we will use the cache for the full prompt without reaching the end of the cache, force | |
// reevaluation of the last token token to recalculate the cached logits | |
if (!embd_inp.empty() && n_matching_session_tokens == embd_inp.size() && session_tokens.size() > embd_inp.size()) { | |
LOGLN("recalculate the cached logits (do): session_tokens.resize( %zu )", embd_inp.size() - 1); | |
session_tokens.resize(embd_inp.size() - 1); | |
} | |
// number of tokens to keep when resetting context | |
if (params.n_keep < 0 || params.n_keep > (int) embd_inp.size() || params.instruct) { | |
params.n_keep = (int)embd_inp.size(); | |
} | |
// prefix & suffix for instruct mode | |
const auto inp_pfx = ::llama_tokenize(ctx, "\n\n### Instruction:\n\n", add_bos); | |
const auto inp_sfx = ::llama_tokenize(ctx, "\n\n### Response:\n\n", false); | |
LOG("inp_pfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_pfx)); | |
LOG("inp_sfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_sfx)); | |
// in instruct mode, we inject a prefix and a suffix to each input by the user | |
if (params.instruct) { | |
params.interactive_first = true; | |
params.antiprompt.push_back("### Instruction:\n\n"); | |
} | |
// enable interactive mode if interactive start is specified | |
if (params.interactive_first) { | |
params.interactive = true; | |
} | |
if (params.verbose_prompt) { | |
LOG_TEE("\n"); | |
LOG_TEE("%s: prompt: '%s'\n", __func__, params.prompt.c_str()); | |
LOG_TEE("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size()); | |
for (int i = 0; i < (int) embd_inp.size(); i++) { | |
LOG_TEE("%6d -> '%s'\n", embd_inp[i], llama_token_to_piece(ctx, embd_inp[i]).c_str()); | |
} | |
if (ctx_guidance) { | |
LOG_TEE("\n"); | |
LOG_TEE("%s: negative prompt: '%s'\n", __func__, sparams.cfg_negative_prompt.c_str()); | |
LOG_TEE("%s: number of tokens in negative prompt = %zu\n", __func__, guidance_inp.size()); | |
for (int i = 0; i < (int) guidance_inp.size(); i++) { | |
LOG_TEE("%6d -> '%s'\n", guidance_inp[i], llama_token_to_piece(ctx, guidance_inp[i]).c_str()); | |
} | |
} | |
if (params.n_keep > 0) { | |
LOG_TEE("%s: static prompt based on n_keep: '", __func__); | |
for (int i = 0; i < params.n_keep; i++) { | |
LOG_TEE("%s", llama_token_to_piece(ctx, embd_inp[i]).c_str()); | |
} | |
LOG_TEE("'\n"); | |
} | |
LOG_TEE("\n"); | |
} | |
if (params.interactive) { | |
struct sigaction sigint_action; | |
sigint_action.sa_handler = sigint_handler; | |
sigemptyset (&sigint_action.sa_mask); | |
sigint_action.sa_flags = 0; | |
sigaction(SIGINT, &sigint_action, NULL); | |
auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL { | |
return (ctrl_type == CTRL_C_EVENT) ? (sigint_handler(SIGINT), true) : false; | |
}; | |
SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true); | |
LOG_TEE("%s: interactive mode on.\n", __func__); | |
if (!params.antiprompt.empty()) { | |
for (const auto & antiprompt : params.antiprompt) { | |
LOG_TEE("Reverse prompt: '%s'\n", antiprompt.c_str()); | |
} | |
} | |
if (params.input_prefix_bos) { | |
LOG_TEE("Input prefix with BOS\n"); | |
} | |
if (!params.input_prefix.empty()) { | |
LOG_TEE("Input prefix: '%s'\n", params.input_prefix.c_str()); | |
} | |
if (!params.input_suffix.empty()) { | |
LOG_TEE("Input suffix: '%s'\n", params.input_suffix.c_str()); | |
} | |
} | |
LOG_TEE("sampling: repeat_last_n = %d, repeat_penalty = %f, presence_penalty = %f, frequency_penalty = %f, top_k = %d, tfs_z = %f, top_p = %f, typical_p = %f, temp = %f, mirostat = %d, mirostat_lr = %f, mirostat_ent = %f\n", | |
sparams.repeat_last_n, sparams.repeat_penalty, sparams.presence_penalty, sparams.frequency_penalty, sparams.top_k, sparams.tfs_z, sparams.top_p, sparams.typical_p, sparams.temp, sparams.mirostat, sparams.mirostat_eta, sparams.mirostat_tau); | |
LOG_TEE("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep); | |
LOG_TEE("\n\n"); | |
struct llama_grammar * grammar = NULL; | |
grammar_parser::parse_state parsed_grammar; | |
if (!params.grammar.empty()) { | |
parsed_grammar = grammar_parser::parse(params.grammar.c_str()); | |
// will be empty (default) if there are parse errors | |
if (parsed_grammar.rules.empty()) { | |
return 1; | |
} | |
LOG_TEE("%s: grammar:\n", __func__); | |
grammar_parser::print_grammar(stderr, parsed_grammar); | |
LOG_TEE("\n"); | |
{ | |
auto it = sparams.logit_bias.find(llama_token_eos(ctx)); | |
if (it != sparams.logit_bias.end() && it->second == -INFINITY) { | |
LOG_TEE("%s: warning: EOS token is disabled, which will cause most grammars to fail\n", __func__); | |
} | |
} | |
std::vector<const llama_grammar_element *> grammar_rules(parsed_grammar.c_rules()); | |
grammar = llama_grammar_init( | |
grammar_rules.data(), grammar_rules.size(), parsed_grammar.symbol_ids.at("root")); | |
} | |
// TODO: replace with ring-buffer | |
std::vector<llama_token> last_tokens(n_ctx); | |
std::fill(last_tokens.begin(), last_tokens.end(), 0); | |
if (params.interactive) { | |
const char *control_message; | |
if (params.multiline_input) { | |
control_message = " - To return control to LLaMa, end your input with '\\'.\n" | |
" - To return control without starting a new line, end your input with '/'.\n"; | |
} else { | |
control_message = " - Press Return to return control to LLaMa.\n" | |
" - To return control without starting a new line, end your input with '/'.\n" | |
" - If you want to submit another line, end your input with '\\'.\n"; | |
} | |
LOG_TEE("== Running in interactive mode. ==\n"); | |
LOG_TEE( " - Press Ctrl+C to interject at any time.\n"); | |
LOG_TEE( "%s\n", control_message); | |
is_interacting = params.interactive_first; | |
} | |
bool is_antiprompt = false; | |
bool input_echo = true; | |
bool need_to_save_session = !path_session.empty() && n_matching_session_tokens < embd_inp.size(); | |
int n_past = 0; | |
int n_remain = params.n_predict; | |
int n_consumed = 0; | |
int n_session_consumed = 0; | |
int n_past_guidance = 0; | |
std::vector<int> input_tokens; g_input_tokens = &input_tokens; | |
std::vector<int> output_tokens; g_output_tokens = &output_tokens; | |
std::ostringstream output_ss; g_output_ss = &output_ss; | |
// the first thing we will do is to output the prompt, so set color accordingly | |
console::set_display(console::prompt); | |
std::vector<llama_token> embd; | |
std::vector<llama_token> embd_guidance; | |
const int n_vocab = llama_n_vocab(model); | |
llama_sampling_context ctx_sampling = llama_sampling_context_init(params, grammar); | |
std::vector<llama_token_data> candidates; | |
candidates.reserve(n_vocab); | |
while ((n_remain != 0 && !is_antiprompt) || params.interactive) { | |
// predict | |
if (!embd.empty()) { | |
// Note: n_ctx - 4 here is to match the logic for commandline prompt handling via | |
// --prompt or --file which uses the same value. | |
int max_embd_size = n_ctx - 4; | |
// Ensure the input doesn't exceed the context size by truncating embd if necessary. | |
if ((int) embd.size() > max_embd_size) { | |
const int skipped_tokens = (int) embd.size() - max_embd_size; | |
embd.resize(max_embd_size); | |
console::set_display(console::error); | |
printf("<<input too long: skipped %d token%s>>", skipped_tokens, skipped_tokens != 1 ? "s" : ""); | |
console::set_display(console::reset); | |
fflush(stdout); | |
} | |
// infinite text generation via context swapping | |
// if we run out of context: | |
// - take the n_keep first tokens from the original prompt (via n_past) | |
// - take half of the last (n_ctx - n_keep) tokens and recompute the logits in batches | |
if (n_past + (int) embd.size() + std::max<int>(0, guidance_offset) > n_ctx) { | |
if (params.n_predict == -2) { | |
LOG_TEE("\n\n%s: context full and n_predict == -%d => stopping\n", __func__, params.n_predict); | |
break; | |
} | |
const int n_left = n_past - params.n_keep - 1; | |
const int n_discard = n_left/2; | |
LOG("context full, swapping: n_past = %d, n_left = %d, n_ctx = %d, n_keep = %d, n_discard = %d\n", | |
n_past, n_left, n_ctx, params.n_keep, n_discard); | |
llama_kv_cache_seq_rm (ctx, 0, params.n_keep + 1 , params.n_keep + n_discard + 1); | |
llama_kv_cache_seq_shift(ctx, 0, params.n_keep + 1 + n_discard, n_past, -n_discard); | |
n_past -= n_discard; | |
if (ctx_guidance) { | |
n_past_guidance -= n_discard; | |
} | |
LOG("after swap: n_past = %d, n_past_guidance = %d\n", n_past, n_past_guidance); | |
LOG("embd: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd)); | |
LOG("clear session path\n"); | |
path_session.clear(); | |
} | |
// try to reuse a matching prefix from the loaded session instead of re-eval (via n_past) | |
if (n_session_consumed < (int) session_tokens.size()) { | |
size_t i = 0; | |
for ( ; i < embd.size(); i++) { | |
if (embd[i] != session_tokens[n_session_consumed]) { | |
session_tokens.resize(n_session_consumed); | |
break; | |
} | |
n_past++; | |
n_session_consumed++; | |
if (n_session_consumed >= (int) session_tokens.size()) { | |
++i; | |
break; | |
} | |
} | |
if (i > 0) { | |
embd.erase(embd.begin(), embd.begin() + i); | |
} | |
} | |
// evaluate tokens in batches | |
// embd is typically prepared beforehand to fit within a batch, but not always | |
if (ctx_guidance) { | |
int input_size = 0; | |
llama_token * input_buf = NULL; | |
if (n_past_guidance < (int) guidance_inp.size()) { | |
// Guidance context should have the same data with these modifications: | |
// | |
// * Replace the initial prompt | |
// * Shift everything by guidance_offset | |
embd_guidance = guidance_inp; | |
if (embd.begin() + original_prompt_len < embd.end()) { | |
embd_guidance.insert( | |
embd_guidance.end(), | |
embd.begin() + original_prompt_len, | |
embd.end() | |
); | |
} | |
input_buf = embd_guidance.data(); | |
input_size = embd_guidance.size(); | |
LOG("guidance context: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_guidance)); | |
} else { | |
input_buf = embd.data(); | |
input_size = embd.size(); | |
} | |
for (int i = 0; i < input_size; i += params.n_batch) { | |
int n_eval = std::min(input_size - i, params.n_batch); | |
if (llama_decode(ctx_guidance, llama_batch_get_one(input_buf + i, n_eval, n_past_guidance, 0))) { | |
LOG_TEE("%s : failed to eval\n", __func__); | |
return 1; | |
} | |
n_past_guidance += n_eval; | |
} | |
} | |
for (int i = 0; i < (int) embd.size(); i += params.n_batch) { | |
int n_eval = (int) embd.size() - i; | |
if (n_eval > params.n_batch) { | |
n_eval = params.n_batch; | |
} | |
LOG("eval: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd)); | |
if (llama_decode(ctx, llama_batch_get_one(&embd[i], n_eval, n_past, 0))) { | |
LOG_TEE("%s : failed to eval\n", __func__); | |
return 1; | |
} | |
n_past += n_eval; | |
LOG("n_past = %d\n", n_past); | |
} | |
if (!embd.empty() && !path_session.empty()) { | |
session_tokens.insert(session_tokens.end(), embd.begin(), embd.end()); | |
n_session_consumed = session_tokens.size(); | |
} | |
} | |
embd.clear(); | |
embd_guidance.clear(); | |
if ((int) embd_inp.size() <= n_consumed && !is_interacting) { | |
// optionally save the session on first sample (for faster prompt loading next time) | |
if (!path_session.empty() && need_to_save_session && !params.prompt_cache_ro) { | |
need_to_save_session = false; | |
llama_save_session_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.size()); | |
LOG("saved session to %s\n", path_session.c_str()); | |
} | |
const llama_token id = llama_sampling_sample(ctx, ctx_guidance, ctx_sampling, last_tokens, candidates); | |
last_tokens.erase(last_tokens.begin()); | |
last_tokens.push_back(id); | |
LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, last_tokens)); | |
embd.push_back(id); | |
// echo this to console | |
input_echo = true; | |
// decrement remaining sampling budget | |
--n_remain; | |
LOG("n_remain: %d\n", n_remain); | |
} else { | |
// some user input remains from prompt or interaction, forward it to processing | |
LOG("embd_inp.size(): %d, n_consumed: %d\n", (int) embd_inp.size(), n_consumed); | |
while ((int) embd_inp.size() > n_consumed) { | |
embd.push_back(embd_inp[n_consumed]); | |
last_tokens.erase(last_tokens.begin()); | |
last_tokens.push_back(embd_inp[n_consumed]); | |
++n_consumed; | |
if ((int) embd.size() >= params.n_batch) { | |
break; | |
} | |
} | |
} | |
// display text | |
if (input_echo) { | |
for (auto id : embd) { | |
const std::string token_str = llama_token_to_piece(ctx, id); | |
printf("%s", token_str.c_str()); | |
if (embd.size() > 1) { | |
input_tokens.push_back(id); | |
} else { | |
output_tokens.push_back(id); | |
output_ss << token_str; | |
} | |
} | |
fflush(stdout); | |
} | |
// reset color to default if there is no pending user input | |
if (input_echo && (int) embd_inp.size() == n_consumed) { | |
console::set_display(console::reset); | |
} | |
// if not currently processing queued inputs; | |
if ((int) embd_inp.size() <= n_consumed) { | |
// check for reverse prompt | |
if (!params.antiprompt.empty()) { | |
std::string last_output; | |
for (auto id : last_tokens) { | |
last_output += llama_token_to_piece(ctx, id); | |
} | |
is_antiprompt = false; | |
// Check if each of the reverse prompts appears at the end of the output. | |
// If we're not running interactively, the reverse prompt might be tokenized with some following characters | |
// so we'll compensate for that by widening the search window a bit. | |
for (std::string & antiprompt : params.antiprompt) { | |
size_t extra_padding = params.interactive ? 0 : 2; | |
size_t search_start_pos = last_output.length() > static_cast<size_t>(antiprompt.length() + extra_padding) | |
? last_output.length() - static_cast<size_t>(antiprompt.length() + extra_padding) | |
: 0; | |
if (last_output.find(antiprompt, search_start_pos) != std::string::npos) { | |
if (params.interactive) { | |
is_interacting = true; | |
} | |
is_antiprompt = true; | |
break; | |
} | |
} | |
if (is_antiprompt) { | |
LOG("found antiprompt: %s\n", last_output.c_str()); | |
} | |
} | |
// deal with end of text token in interactive mode | |
if (last_tokens.back() == llama_token_eos(ctx)) { | |
LOG("found EOS token\n"); | |
if (params.interactive) { | |
if (!params.antiprompt.empty()) { | |
// tokenize and inject first reverse prompt | |
const auto first_antiprompt = ::llama_tokenize(ctx, params.antiprompt.front(), false); | |
embd_inp.insert(embd_inp.end(), first_antiprompt.begin(), first_antiprompt.end()); | |
is_antiprompt = true; | |
} | |
is_interacting = true; | |
printf("\n"); | |
} else if (params.instruct) { | |
is_interacting = true; | |
} | |
} | |
if (n_past > 0 && is_interacting) { | |
LOG("waiting for user input\n"); | |
if (params.instruct) { | |
printf("\n> "); | |
} | |
if (params.input_prefix_bos) { | |
LOG("adding input prefix BOS token\n"); | |
embd_inp.push_back(llama_token_bos(ctx)); | |
} | |
std::string buffer; | |
if (!params.input_prefix.empty()) { | |
LOG("appending input prefix: '%s'\n", params.input_prefix.c_str()); | |
buffer += params.input_prefix; | |
printf("%s", buffer.c_str()); | |
} | |
// color user input only | |
console::set_display(console::user_input); | |
std::string line; | |
bool another_line = true; | |
do { | |
another_line = console::readline(line, params.multiline_input); | |
buffer += line; | |
} while (another_line); | |
// done taking input, reset color | |
console::set_display(console::reset); | |
// Add tokens to embd only if the input buffer is non-empty | |
// Entering a empty line lets the user pass control back | |
if (buffer.length() > 1) { | |
// append input suffix if any | |
if (!params.input_suffix.empty()) { | |
LOG("appending input suffix: '%s'\n", params.input_suffix.c_str()); | |
buffer += params.input_suffix; | |
printf("%s", params.input_suffix.c_str()); | |
} | |
LOG("buffer: '%s'\n", buffer.c_str()); | |
const size_t original_size = embd_inp.size(); | |
// instruct mode: insert instruction prefix | |
if (params.instruct && !is_antiprompt) { | |
LOG("inserting instruction prefix\n"); | |
n_consumed = embd_inp.size(); | |
embd_inp.insert(embd_inp.end(), inp_pfx.begin(), inp_pfx.end()); | |
} | |
const auto line_inp = ::llama_tokenize(ctx, buffer, false); | |
LOG("input tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, line_inp)); | |
embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end()); | |
// instruct mode: insert response suffix | |
if (params.instruct) { | |
LOG("inserting instruction suffix\n"); | |
embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end()); | |
} | |
for (size_t i = original_size; i < embd_inp.size(); ++i) { | |
const llama_token token = embd_inp[i]; | |
output_tokens.push_back(token); | |
output_ss << llama_token_to_piece(ctx, token); | |
} | |
n_remain -= line_inp.size(); | |
LOG("n_remain: %d\n", n_remain); | |
} else { | |
LOG("empty line, passing control back\n"); | |
} | |
input_echo = false; // do not echo this again | |
} | |
if (n_past > 0) { | |
if (is_interacting) { | |
// reset grammar state if we're restarting generation | |
if (grammar != NULL) { | |
llama_grammar_free(grammar); | |
std::vector<const llama_grammar_element *> grammar_rules(parsed_grammar.c_rules()); | |
grammar = llama_grammar_init( | |
grammar_rules.data(), grammar_rules.size(), | |
parsed_grammar.symbol_ids.at("root")); | |
} | |
} | |
is_interacting = false; | |
} | |
} | |
// end of text token | |
if (!embd.empty() && embd.back() == llama_token_eos(ctx) && !(params.instruct || params.interactive)) { | |
LOG_TEE(" [end of text]\n"); | |
break; | |
} | |
// In interactive mode, respect the maximum number of tokens and drop back to user input when reached. | |
// We skip this logic when n_predict == -1 (infinite) or -2 (stop at context size). | |
if (params.interactive && n_remain <= 0 && params.n_predict >= 0) { | |
n_remain = params.n_predict; | |
is_interacting = true; | |
} | |
} | |
if (!path_session.empty() && params.prompt_cache_all && !params.prompt_cache_ro) { | |
LOG_TEE("\n%s: saving final output to session file '%s'\n", __func__, path_session.c_str()); | |
llama_save_session_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.size()); | |
} | |
llama_print_timings(ctx); | |
write_logfile(ctx, params, model, input_tokens, output_ss.str(), output_tokens); | |
if (ctx_guidance) { llama_free(ctx_guidance); } | |
llama_free(ctx); | |
llama_free_model(model); | |
if (grammar != NULL) { | |
llama_grammar_free(grammar); | |
} | |
llama_backend_free(); | |
LOG_TEE("Log end\n"); | |
return 0; | |
} | |