File size: 76,706 Bytes
1ec6819
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc53b3a
1ec6819
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f57d7c6
 
1ec6819
f57d7c6
1ec6819
f57d7c6
 
 
 
 
1ec6819
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
edc20ac
 
 
 
 
 
 
 
 
f57d7c6
 
 
 
 
 
 
 
1ec6819
 
 
 
 
 
 
 
 
 
 
46c2bfc
 
1ec6819
dc53b3a
f57d7c6
6ba25f7
1ec6819
 
f57d7c6
 
 
 
 
9938c27
6ba25f7
 
 
f57d7c6
 
 
 
 
6ba25f7
dc53b3a
edc20ac
 
1ec6819
 
 
 
 
 
 
 
46c2bfc
 
 
 
 
 
 
 
9938c27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ec6819
 
 
 
f57d7c6
 
 
1ec6819
 
 
 
 
 
 
 
 
9938c27
 
1ec6819
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57c742e
1ec6819
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9938c27
1ec6819
 
f57d7c6
1ec6819
 
 
 
f57d7c6
1ec6819
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9938c27
 
6317bb3
f57d7c6
6ba25f7
 
1ec6819
6317bb3
 
 
f57d7c6
 
1ec6819
 
 
b439a8f
 
f57d7c6
 
1ec6819
6ba25f7
 
1ec6819
 
 
edc20ac
 
 
 
81bf9b4
 
 
 
1ec6819
 
 
 
 
 
6ba25f7
 
 
 
 
 
 
 
 
 
 
 
1ec6819
edc20ac
 
 
 
 
 
46c2bfc
 
 
 
 
 
1ec6819
 
 
 
 
 
 
edc20ac
 
 
1ec6819
 
 
 
 
 
57c742e
 
 
 
1ec6819
 
 
 
46c2bfc
 
1ec6819
 
 
 
 
6ba25f7
edc20ac
6ba25f7
1ec6819
 
 
dc53b3a
1ec6819
 
 
 
 
 
f57d7c6
 
 
1ec6819
 
 
 
 
 
57c742e
1ec6819
 
 
 
dc53b3a
 
 
 
 
 
 
 
 
 
6ba25f7
 
 
 
dc53b3a
 
6ba25f7
 
 
46c2bfc
 
 
 
 
 
 
 
 
6ba25f7
1ec6819
 
 
 
 
 
 
 
 
6ba25f7
 
46c2bfc
 
1ec6819
 
 
 
 
 
edc20ac
 
1ec6819
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e081f1
 
 
1ec6819
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81bf9b4
 
 
1ec6819
 
 
 
 
 
f57d7c6
1ec6819
 
 
 
 
 
 
 
6ba25f7
1ec6819
 
 
 
 
 
 
 
 
 
 
 
edc20ac
 
1ec6819
 
 
 
 
 
 
 
 
 
 
6ba25f7
1ec6819
 
b439a8f
 
 
1ec6819
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f57d7c6
1ec6819
 
 
 
 
 
 
46c2bfc
 
 
1ec6819
 
 
46c2bfc
 
 
1ec6819
 
 
46c2bfc
 
 
1ec6819
 
 
6ba25f7
 
 
 
f57d7c6
6ba25f7
1ec6819
 
 
 
 
 
 
 
 
6ba25f7
 
 
 
 
1ec6819
 
 
 
 
 
 
 
 
 
46c2bfc
 
 
 
 
 
1ec6819
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b439a8f
 
 
 
 
1ec6819
 
 
 
 
b439a8f
 
 
 
 
1ec6819
 
 
 
 
b439a8f
 
 
 
 
1ec6819
 
 
 
b439a8f
 
 
 
1ec6819
 
 
 
b439a8f
 
 
 
1ec6819
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9938c27
 
 
 
 
1ec6819
 
 
 
 
 
 
46c2bfc
1ec6819
 
 
 
 
f57d7c6
 
 
 
 
 
 
1ec6819
 
 
 
b439a8f
 
 
 
1ec6819
 
 
 
b439a8f
 
 
 
1ec6819
 
 
 
b439a8f
 
 
 
1ec6819
 
 
 
b439a8f
 
 
 
9938c27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ec6819
 
 
 
b439a8f
 
 
 
1ec6819
 
 
 
 
b439a8f
 
 
 
 
 
 
 
 
 
 
 
1ec6819
 
 
 
b439a8f
 
 
 
1ec6819
 
 
 
 
 
 
 
 
 
f57d7c6
 
1ec6819
b439a8f
 
f57d7c6
 
b439a8f
1ec6819
 
6ba25f7
 
1ec6819
b439a8f
 
6ba25f7
 
b439a8f
f57d7c6
 
 
 
 
 
 
 
 
 
 
 
 
1ec6819
 
 
 
 
f57d7c6
 
1ec6819
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ba25f7
 
 
 
 
 
1ec6819
 
 
 
 
6ba25f7
 
 
 
 
46c2bfc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ec6819
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46c2bfc
1ec6819
81bf9b4
46c2bfc
 
1ec6819
 
 
46c2bfc
1ec6819
81bf9b4
 
1ec6819
 
 
 
 
46c2bfc
1ec6819
81bf9b4
 
1ec6819
edc20ac
 
 
 
46c2bfc
edc20ac
 
 
 
 
 
 
6ba25f7
 
 
46c2bfc
6ba25f7
 
 
 
 
 
f57d7c6
 
 
 
46c2bfc
f57d7c6
 
 
 
1ec6819
 
 
 
 
46c2bfc
1ec6819
6ba25f7
f57d7c6
 
 
 
 
1ec6819
 
 
57c742e
1ec6819
 
 
 
 
 
 
 
57c742e
1ec6819
 
 
 
 
9938c27
1ec6819
 
9938c27
 
 
 
1ec6819
f57d7c6
 
 
 
 
 
 
 
 
6317bb3
 
 
 
 
 
 
 
9938c27
b439a8f
 
9938c27
 
 
 
 
 
 
b439a8f
f57d7c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ec6819
 
9938c27
f57d7c6
1ec6819
6ba25f7
 
 
 
 
 
edc20ac
6ba25f7
 
 
 
 
 
 
edc20ac
6ba25f7
 
 
 
 
 
 
 
 
 
f57d7c6
 
 
 
 
 
 
1ec6819
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b439a8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ba25f7
 
 
 
 
 
 
 
 
 
f57d7c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
edc20ac
 
 
 
 
 
 
 
 
 
1ec6819
 
edc20ac
 
1ec6819
edc20ac
81bf9b4
 
edc20ac
 
81bf9b4
edc20ac
1ec6819
 
 
edc20ac
 
1ec6819
edc20ac
81bf9b4
 
 
edc20ac
 
81bf9b4
edc20ac
81bf9b4
 
edc20ac
 
81bf9b4
edc20ac
81bf9b4
 
edc20ac
 
81bf9b4
edc20ac
81bf9b4
 
 
edc20ac
 
81bf9b4
edc20ac
81bf9b4
 
 
edc20ac
 
81bf9b4
edc20ac
81bf9b4
 
 
 
edc20ac
 
81bf9b4
edc20ac
81bf9b4
 
 
 
edc20ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81bf9b4
1ec6819
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc53b3a
1ec6819
edc20ac
f57d7c6
 
1ec6819
 
 
 
edc20ac
 
 
 
 
dc53b3a
 
 
6ba25f7
dc53b3a
 
 
 
 
1ec6819
 
 
 
 
 
 
 
 
 
 
 
46c2bfc
 
 
 
 
 
 
 
 
 
1ec6819
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6317bb3
1ec6819
 
 
 
 
 
 
 
46c2bfc
 
f57d7c6
1ec6819
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46c2bfc
 
1ec6819
 
 
 
 
 
f57d7c6
1ec6819
 
 
 
 
 
f57d7c6
1ec6819
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f57d7c6
 
 
1ec6819
46c2bfc
1ec6819
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f57d7c6
1ec6819
f57d7c6
 
1ec6819
 
 
 
 
 
 
 
 
 
 
 
 
f57d7c6
 
 
1ec6819
 
 
 
 
 
 
 
 
 
 
 
 
f57d7c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46c2bfc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f57d7c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ec6819
 
 
 
 
 
 
 
 
 
 
 
f57d7c6
1ec6819
 
 
 
 
 
 
 
f57d7c6
1ec6819
 
 
 
 
 
 
9938c27
1ec6819
 
 
 
9938c27
 
 
1ec6819
 
f57d7c6
 
 
 
9938c27
 
 
 
 
 
 
57c742e
1ec6819
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
#pragma once

//
// GGML Tensor Library
//
// This documentation is still a work in progress.
// If you wish some specific topics to be covered, feel free to drop a comment:
//
//   https://github.com/ggerganov/whisper.cpp/issues/40
//
// ## Overview
//
// This library implements:
//
//  - a set of tensor operations
//  - automatic differentiation
//  - basic optimization algorithms
//
// The aim of this library is to provide a minimalistic approach for various machine learning tasks. This includes,
// but is not limited to, the following:
//
//  - linear regression
//  - support vector machines
//  - neural networks
//
// The library allows the user to define a certain function using the available tensor operations. This function
// definition is represented internally via a computation graph. Each tensor operation in the function definition
// corresponds to a node in the graph. Having the computation graph defined, the user can choose to compute the
// function's value and/or its gradient with respect to the input variables. Optionally, the function can be optimized
// using one of the available optimization algorithms.
//
// For example, here we define the function: f(x) = a*x^2 + b
//
//   {
//       struct ggml_init_params params = {
//           .mem_size   = 16*1024*1024,
//           .mem_buffer = NULL,
//       };
//
//       // memory allocation happens here
//       struct ggml_context * ctx = ggml_init(params);
//
//       struct ggml_tensor * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
//
//       ggml_set_param(ctx, x); // x is an input variable
//
//       struct ggml_tensor * a  = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
//       struct ggml_tensor * b  = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
//       struct ggml_tensor * x2 = ggml_mul(ctx, x, x);
//       struct ggml_tensor * f  = ggml_add(ctx, ggml_mul(ctx, a, x2), b);
//
//       ...
//   }
//
// Notice that the function definition above does not involve any actual computation. The computation is performed only
// when the user explicitly requests it. For example, to compute the function's value at x = 2.0:
//
//   {
//       ...
//
//       struct ggml_cgraph gf = ggml_build_forward(f);
//
//       // set the input variable and parameter values
//       ggml_set_f32(x, 2.0f);
//       ggml_set_f32(a, 3.0f);
//       ggml_set_f32(b, 4.0f);
//
//       ggml_graph_compute_with_ctx(ctx, &gf, n_threads);
//
//       printf("f = %f\n", ggml_get_f32_1d(f, 0));
//
//       ...
//   }
//
// The actual computation is performed in the ggml_graph_compute() function.
//
// The ggml_new_tensor_...() functions create new tensors. They are allocated in the memory buffer provided to the
// ggml_init() function. You have to be careful not to exceed the memory buffer size. Therefore, you have to know
// in advance how much memory you need for your computation. Alternatively, you can allocate a large enough memory
// and after defining the computation graph, call the ggml_used_mem() function to find out how much memory was
// actually needed.
//
// The ggml_set_param() function marks a tensor as an input variable. This is used by the automatic
// differentiation and optimization algorithms.
//
// The described approach allows to define the function graph once and then compute its forward or backward graphs
// multiple times. All computations will use the same memory buffer allocated in the ggml_init() function. This way
// the user can avoid the memory allocation overhead at runtime.
//
// The library supports multi-dimensional tensors - up to 4 dimensions. The FP16 and FP32 data types are first class
// citizens, but in theory the library can be extended to support FP8 and integer data types.
//
// Each tensor operation produces a new tensor. Initially the library was envisioned to support only the use of unary
// and binary operations. Most of the available operations fall into one of these two categories. With time, it became
// clear that the library needs to support more complex operations. The way to support these operations is not clear
// yet, but a few examples are demonstrated in the following operations:
//
//   - ggml_permute()
//   - ggml_conv_1d_1s()
//   - ggml_conv_1d_2s()
//
// For each tensor operator, the library implements a forward and backward computation function. The forward function
// computes the output tensor value given the input tensor values. The backward function computes the adjoint of the
// input tensors given the adjoint of the output tensor. For a detailed explanation of what this means, take a
// calculus class, or watch the following video:
//
//   What is Automatic Differentiation?
//   https://www.youtube.com/watch?v=wG_nF1awSSY
//
//
// ## Tensor data (struct ggml_tensor)
//
// The tensors are stored in memory via the ggml_tensor struct. The structure provides information about the size of
// the tensor, the data type, and the memory buffer where the tensor data is stored. Additionally, it contains
// pointers to the "source" tensors - i.e. the tensors that were used to compute the current tensor. For example:
//
//   {
//       struct ggml_tensor * c = ggml_add(ctx, a, b);
//
//       assert(c->src[0] == a);
//       assert(c->src[1] == b);
//   }
//
// The multi-dimensional tensors are stored in row-major order. The ggml_tensor struct contains fields for the
// number of elements in each dimension ("ne") as well as the number of bytes ("nb", a.k.a. stride). This allows
// to store tensors that are not contiguous in memory, which is useful for operations such as transposition and
// permutation. All tensor operations have to take the stride into account and not assume that the tensor is
// contiguous in memory.
//
// The data of the tensor is accessed via the "data" pointer. For example:
//
//   {
//       const int nx = 2;
//       const int ny = 3;
//
//       struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, ny);
//
//       for (int y = 0; y < ny; y++) {
//           for (int x = 0; x < nx; x++) {
//               *(float *) ((char *) a->data + y*a->nb[1] + x*a->nb[0]) = x + y;
//           }
//       }
//
//       ...
//   }
//
// Alternatively, there are helper functions, such as ggml_get_f32_1d() and ggml_set_f32_1d() that can be used.
//
// ## The matrix multiplication operator (ggml_mul_mat)
//
// TODO
//
//
// ## Multi-threading
//
// TODO
//
//
// ## Overview of ggml.c
//
// TODO
//
//
// ## SIMD optimizations
//
// TODO
//
//
// ## Debugging ggml
//
// TODO
//
//

#ifdef GGML_SHARED
#    if defined(_WIN32) && !defined(__MINGW32__)
#        ifdef GGML_BUILD
#            define GGML_API __declspec(dllexport)
#        else
#            define GGML_API __declspec(dllimport)
#        endif
#    else
#        define GGML_API __attribute__ ((visibility ("default")))
#    endif
#else
#    define GGML_API
#endif

// TODO: support for clang
#ifdef __GNUC__
#    define GGML_DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
#elif defined(_MSC_VER)
#    define GGML_DEPRECATED(func, hint) __declspec(deprecated(hint)) func
#else
#    define GGML_DEPRECATED(func, hint) func
#endif

#ifndef __GNUC__
#    define GGML_ATTRIBUTE_FORMAT(...)
#elif defined(__MINGW32__)
#    define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
#else
#    define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
#endif

#include <stdint.h>
#include <stddef.h>
#include <stdbool.h>

#define GGML_FILE_MAGIC   0x67676d6c // "ggml"
#define GGML_FILE_VERSION 1

#define GGML_QNT_VERSION        2    // bump this on quantization format changes
#define GGML_QNT_VERSION_FACTOR 1000 // do not change this

#define GGML_MAX_DIMS          4
#define GGML_MAX_NODES         16384
#define GGML_MAX_PARAMS        1024
#define GGML_MAX_CONTEXTS      64
#define GGML_MAX_SRC           6
#define GGML_MAX_NAME          64
#define GGML_MAX_OP_PARAMS     32
#define GGML_DEFAULT_N_THREADS 4

#if UINTPTR_MAX == 0xFFFFFFFF
    #define GGML_MEM_ALIGN 4
#else
    #define GGML_MEM_ALIGN 16
#endif

#define GGML_EXIT_SUCCESS 0
#define GGML_EXIT_ABORTED 1

#define GGUF_MAGIC   0x46554747 // "GGUF"
#define GGUF_VERSION 2

#define GGUF_DEFAULT_ALIGNMENT 32

#define GGML_UNUSED(x) (void)(x)

#define GGML_PAD(x, n) (((x) + (n) - 1) & ~((n) - 1))

#define GGML_ASSERT(x) \
    do { \
        if (!(x)) { \
            fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
            abort(); \
        } \
    } while (0)

#ifndef NDEBUG
#define GGML_UNREACHABLE() GGML_ASSERT(!"statement should not be reached")
#elif defined(__GNUC__)
#define GGML_UNREACHABLE() __builtin_unreachable()
#else
#define GGML_UNREACHABLE() ((void) 0)
#endif

// used to copy the number of elements and stride in bytes of tensors into local variables.
// main purpose is to reduce code duplication and improve readability.
//
// example:
//
//    GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
//    GGML_TENSOR_LOCALS(size_t,  nb1, src1, nb);
//
#define GGML_TENSOR_LOCALS_1(type, prefix, pointer, array) \
    const type prefix##0 = (pointer)->array[0]; \
    GGML_UNUSED(prefix##0);
#define GGML_TENSOR_LOCALS_2(type, prefix, pointer, array) \
    GGML_TENSOR_LOCALS_1    (type, prefix, pointer, array) \
    const type prefix##1 = (pointer)->array[1]; \
    GGML_UNUSED(prefix##1);
#define GGML_TENSOR_LOCALS_3(type, prefix, pointer, array) \
    GGML_TENSOR_LOCALS_2    (type, prefix, pointer, array) \
    const type prefix##2 = (pointer)->array[2]; \
    GGML_UNUSED(prefix##2);
#define GGML_TENSOR_LOCALS(type, prefix, pointer, array) \
    GGML_TENSOR_LOCALS_3  (type, prefix, pointer, array) \
    const type prefix##3 = (pointer)->array[3]; \
    GGML_UNUSED(prefix##3);

#ifdef  __cplusplus
extern "C" {
#endif

#if defined(__ARM_NEON) && defined(__CUDACC__)
    typedef half ggml_fp16_t;
#elif defined(__ARM_NEON)
    typedef __fp16 ggml_fp16_t;
#else
    typedef uint16_t ggml_fp16_t;
#endif

    // convert FP16 <-> FP32
    GGML_API float       ggml_fp16_to_fp32(ggml_fp16_t x);
    GGML_API ggml_fp16_t ggml_fp32_to_fp16(float x);

    GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n);
    GGML_API void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n);

    struct ggml_object;
    struct ggml_context;

    enum ggml_type {
        GGML_TYPE_F32  = 0,
        GGML_TYPE_F16  = 1,
        GGML_TYPE_Q4_0 = 2,
        GGML_TYPE_Q4_1 = 3,
        // GGML_TYPE_Q4_2 = 4, support has been removed
        // GGML_TYPE_Q4_3 (5) support has been removed
        GGML_TYPE_Q5_0 = 6,
        GGML_TYPE_Q5_1 = 7,
        GGML_TYPE_Q8_0 = 8,
        GGML_TYPE_Q8_1 = 9,
        // k-quantizations
        GGML_TYPE_Q2_K = 10,
        GGML_TYPE_Q3_K = 11,
        GGML_TYPE_Q4_K = 12,
        GGML_TYPE_Q5_K = 13,
        GGML_TYPE_Q6_K = 14,
        GGML_TYPE_Q8_K = 15,
        GGML_TYPE_I8,
        GGML_TYPE_I16,
        GGML_TYPE_I32,
        GGML_TYPE_COUNT,
    };

    enum ggml_backend_type {
        GGML_BACKEND_CPU = 0,
        GGML_BACKEND_GPU = 10,
        GGML_BACKEND_GPU_SPLIT = 20,
    };

    // model file types
    enum ggml_ftype {
        GGML_FTYPE_UNKNOWN     = -1,
        GGML_FTYPE_ALL_F32     = 0,
        GGML_FTYPE_MOSTLY_F16  = 1,  // except 1d tensors
        GGML_FTYPE_MOSTLY_Q4_0 = 2,  // except 1d tensors
        GGML_FTYPE_MOSTLY_Q4_1 = 3,  // except 1d tensors
        GGML_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
        GGML_FTYPE_MOSTLY_Q8_0 = 7,  // except 1d tensors
        GGML_FTYPE_MOSTLY_Q5_0 = 8,  // except 1d tensors
        GGML_FTYPE_MOSTLY_Q5_1 = 9,  // except 1d tensors
        GGML_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
        GGML_FTYPE_MOSTLY_Q3_K = 11, // except 1d tensors
        GGML_FTYPE_MOSTLY_Q4_K = 12, // except 1d tensors
        GGML_FTYPE_MOSTLY_Q5_K = 13, // except 1d tensors
        GGML_FTYPE_MOSTLY_Q6_K = 14, // except 1d tensors
    };

    // available tensor operations:
    enum ggml_op {
        GGML_OP_NONE = 0,

        GGML_OP_DUP,
        GGML_OP_ADD,
        GGML_OP_ADD1,
        GGML_OP_ACC,
        GGML_OP_SUB,
        GGML_OP_MUL,
        GGML_OP_DIV,
        GGML_OP_SQR,
        GGML_OP_SQRT,
        GGML_OP_LOG,
        GGML_OP_SUM,
        GGML_OP_SUM_ROWS,
        GGML_OP_MEAN,
        GGML_OP_ARGMAX,
        GGML_OP_REPEAT,
        GGML_OP_REPEAT_BACK,
        GGML_OP_CONCAT,
        GGML_OP_SILU_BACK,
        GGML_OP_NORM, // normalize
        GGML_OP_RMS_NORM,
        GGML_OP_RMS_NORM_BACK,
        GGML_OP_GROUP_NORM,

        GGML_OP_MUL_MAT,
        GGML_OP_OUT_PROD,

        GGML_OP_SCALE,
        GGML_OP_SET,
        GGML_OP_CPY,
        GGML_OP_CONT,
        GGML_OP_RESHAPE,
        GGML_OP_VIEW,
        GGML_OP_PERMUTE,
        GGML_OP_TRANSPOSE,
        GGML_OP_GET_ROWS,
        GGML_OP_GET_ROWS_BACK,
        GGML_OP_DIAG,
        GGML_OP_DIAG_MASK_INF,
        GGML_OP_DIAG_MASK_ZERO,
        GGML_OP_SOFT_MAX,
        GGML_OP_SOFT_MAX_BACK,
        GGML_OP_ROPE,
        GGML_OP_ROPE_BACK,
        GGML_OP_ALIBI,
        GGML_OP_CLAMP,
        GGML_OP_CONV_1D,
        GGML_OP_CONV_2D,
        GGML_OP_CONV_TRANSPOSE_1D,
        GGML_OP_CONV_TRANSPOSE_2D,
        GGML_OP_POOL_1D,
        GGML_OP_POOL_2D,

        GGML_OP_CONV_1D_STAGE_0,  // internal
        GGML_OP_CONV_1D_STAGE_1,  // internal

        GGML_OP_UPSCALE, // nearest interpolate

        GGML_OP_FLASH_ATTN,
        GGML_OP_FLASH_FF,
        GGML_OP_FLASH_ATTN_BACK,
        GGML_OP_WIN_PART,
        GGML_OP_WIN_UNPART,
        GGML_OP_GET_REL_POS,
        GGML_OP_ADD_REL_POS,

        GGML_OP_UNARY,

        GGML_OP_MAP_UNARY,
        GGML_OP_MAP_BINARY,

        GGML_OP_MAP_CUSTOM1_F32,
        GGML_OP_MAP_CUSTOM2_F32,
        GGML_OP_MAP_CUSTOM3_F32,

        GGML_OP_MAP_CUSTOM1,
        GGML_OP_MAP_CUSTOM2,
        GGML_OP_MAP_CUSTOM3,

        GGML_OP_CROSS_ENTROPY_LOSS,
        GGML_OP_CROSS_ENTROPY_LOSS_BACK,

        GGML_OP_COUNT,
    };

    enum ggml_unary_op {
        GGML_UNARY_OP_ABS,
        GGML_UNARY_OP_SGN,
        GGML_UNARY_OP_NEG,
        GGML_UNARY_OP_STEP,
        GGML_UNARY_OP_TANH,
        GGML_UNARY_OP_ELU,
        GGML_UNARY_OP_RELU,
        GGML_UNARY_OP_GELU,
        GGML_UNARY_OP_GELU_QUICK,
        GGML_UNARY_OP_SILU,
    };

    enum ggml_object_type {
        GGML_OBJECT_TENSOR,
        GGML_OBJECT_GRAPH,
        GGML_OBJECT_WORK_BUFFER
    };

    enum ggml_log_level {
        GGML_LOG_LEVEL_ERROR = 2,
        GGML_LOG_LEVEL_WARN = 3,
        GGML_LOG_LEVEL_INFO = 4
    };

    // ggml object
    struct ggml_object {
        size_t offs;
        size_t size;

        struct ggml_object * next;

        enum ggml_object_type type;

        char padding[4];
    };

    static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);

    // n-dimensional tensor
    struct ggml_tensor {
        enum ggml_type         type;
        enum ggml_backend_type backend;

        struct ggml_backend_buffer * buffer;

        int     n_dims;
        int64_t ne[GGML_MAX_DIMS]; // number of elements
        size_t  nb[GGML_MAX_DIMS]; // stride in bytes:
                                   // nb[0] = ggml_type_size(type)
                                   // nb[1] = nb[0]   * (ne[0] / ggml_blck_size(type)) + padding
                                   // nb[i] = nb[i-1] * ne[i-1]

        // compute data
        enum ggml_op op;

        // op params - allocated as int32_t for alignment
        int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];

        bool is_param;

        struct ggml_tensor * grad;
        struct ggml_tensor * src[GGML_MAX_SRC];

        // performance
        int     perf_runs;
        int64_t perf_cycles;
        int64_t perf_time_us;

        struct ggml_tensor * view_src;
        size_t               view_offs;

        void * data;

        char name[GGML_MAX_NAME];

        void * extra; // extra things e.g. for ggml-cuda.cu

        char padding[12];
    };

    static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor);

    // the compute plan that needs to be prepared for ggml_graph_compute()
    // since https://github.com/ggerganov/ggml/issues/287
    struct ggml_cplan {
        size_t    work_size; // size of work buffer, calculated by `ggml_graph_plan()`
        uint8_t * work_data; // work buffer, to be allocated by caller before calling to `ggml_graph_compute()`

        int n_threads;

        // the `n_tasks` of nodes, 1:1 mapping to cgraph nodes
        int n_tasks[GGML_MAX_NODES];

        // abort ggml_graph_compute when true
        bool (*abort_callback)(void * data);
        void * abort_callback_data;
    };

    // next prime after GGML_MAX_NODES
    // #define GGML_GRAPH_HASHTABLE_SIZE 4099
    // next prime after GGML_MAX_NODES * 2 (nodes + leafs)
    // #define GGML_GRAPH_HASHTABLE_SIZE 8273
    // #define GGML_GRAPH_HASHTABLE_SIZE 16411
    #define GGML_GRAPH_HASHTABLE_SIZE 32771

    enum ggml_cgraph_eval_order {
        GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT = 0,
        GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT,
        GGML_CGRAPH_EVAL_ORDER_COUNT
    };

    // computation graph
    struct ggml_cgraph {
        int n_nodes;
        int n_leafs;

        struct ggml_tensor * nodes[GGML_MAX_NODES];
        struct ggml_tensor * grads[GGML_MAX_NODES];
        struct ggml_tensor * leafs[GGML_MAX_NODES];

        void * visited_hash_table[GGML_GRAPH_HASHTABLE_SIZE];

        enum ggml_cgraph_eval_order order;

        // performance
        int     perf_runs;
        int64_t perf_cycles;
        int64_t perf_time_us;
    };

    static const size_t GGML_GRAPH_SIZE = sizeof(struct ggml_cgraph);

    // scratch buffer
    struct ggml_scratch {
        size_t offs;
        size_t size;
        void * data;
    };

    struct ggml_init_params {
        // memory pool
        size_t mem_size;   // bytes
        void * mem_buffer; // if NULL, memory will be allocated internally
        bool   no_alloc;   // don't allocate memory for the tensor data
    };


    // compute types

    // NOTE: the INIT or FINALIZE pass is not scheduled unless explicitly enabled.
    // This behavior was changed since https://github.com/ggerganov/llama.cpp/pull/1995.
    enum ggml_task_type {
        GGML_TASK_INIT = 0,
        GGML_TASK_COMPUTE,
        GGML_TASK_FINALIZE,
    };

    struct ggml_compute_params {
        enum ggml_task_type type;

        // ith = thread index, nth = number of threads
        int ith, nth;

        // work buffer for all threads
        size_t wsize;
        void * wdata;
    };

    // misc

    GGML_API void    ggml_time_init(void); // call this once at the beginning of the program
    GGML_API int64_t ggml_time_ms(void);
    GGML_API int64_t ggml_time_us(void);
    GGML_API int64_t ggml_cycles(void);
    GGML_API int64_t ggml_cycles_per_ms(void);

    GGML_API void    ggml_numa_init(void); // call once for better performance on NUMA systems
    GGML_API bool    ggml_is_numa(void); // true if init detected that system has >1 NUMA node

    GGML_API void    ggml_print_object (const struct ggml_object * obj);
    GGML_API void    ggml_print_objects(const struct ggml_context * ctx);

    GGML_API int64_t ggml_nelements   (const struct ggml_tensor * tensor);
    GGML_API int64_t ggml_nrows       (const struct ggml_tensor * tensor);
    GGML_API size_t  ggml_nbytes      (const struct ggml_tensor * tensor);
    GGML_API size_t  ggml_nbytes_pad  (const struct ggml_tensor * tensor); // same as ggml_nbytes() but padded to GGML_MEM_ALIGN
    GGML_API size_t  ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split);

    GGML_API int     ggml_blck_size (enum ggml_type type);
    GGML_API size_t  ggml_type_size (enum ggml_type type); // size in bytes for all elements in a block
    GGML_API float   ggml_type_sizef(enum ggml_type type); // ggml_type_size()/ggml_blck_size() as float

    GGML_API const char * ggml_type_name(enum ggml_type type);
    GGML_API const char * ggml_op_name  (enum ggml_op   op);
    GGML_API const char * ggml_op_symbol(enum ggml_op   op);

    GGML_API size_t  ggml_element_size(const struct ggml_tensor * tensor);

    GGML_API bool    ggml_is_quantized(enum ggml_type type);

    // TODO: temporary until model loading of ggml examples is refactored
    GGML_API enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype);

    GGML_API bool ggml_is_transposed(const struct ggml_tensor * tensor);
    GGML_API bool ggml_is_contiguous(const struct ggml_tensor * tensor);
    GGML_API bool ggml_is_permuted  (const struct ggml_tensor * tensor);

    GGML_API bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1);

    // use this to compute the memory overhead of a tensor
    GGML_API size_t ggml_tensor_overhead(void);

    // main

    GGML_API struct ggml_context * ggml_init(struct ggml_init_params params);
    GGML_API void                  ggml_free(struct ggml_context * ctx);

    GGML_API size_t  ggml_used_mem(const struct ggml_context * ctx);

    GGML_API size_t  ggml_set_scratch (struct ggml_context * ctx, struct ggml_scratch scratch);
    GGML_API bool    ggml_get_no_alloc(struct ggml_context * ctx);
    GGML_API void    ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc);

    GGML_API void *  ggml_get_mem_buffer     (const struct ggml_context * ctx);
    GGML_API size_t  ggml_get_mem_size       (const struct ggml_context * ctx);
    GGML_API size_t  ggml_get_max_tensor_size(const struct ggml_context * ctx);

    GGML_API struct ggml_tensor * ggml_new_tensor(
            struct ggml_context * ctx,
            enum   ggml_type type,
            int    n_dims,
            const int64_t *ne);

    GGML_API struct ggml_tensor * ggml_new_tensor_1d(
            struct ggml_context * ctx,
            enum   ggml_type type,
            int64_t ne0);

    GGML_API struct ggml_tensor * ggml_new_tensor_2d(
            struct ggml_context * ctx,
            enum   ggml_type type,
            int64_t ne0,
            int64_t ne1);

    GGML_API struct ggml_tensor * ggml_new_tensor_3d(
            struct ggml_context * ctx,
            enum   ggml_type type,
            int64_t ne0,
            int64_t ne1,
            int64_t ne2);

    GGML_API struct ggml_tensor * ggml_new_tensor_4d(
            struct ggml_context * ctx,
            enum   ggml_type type,
            int64_t ne0,
            int64_t ne1,
            int64_t ne2,
            int64_t ne3);

    GGML_API struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
    GGML_API struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);

    GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
    GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, struct ggml_tensor * src);

    GGML_API struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name);

    GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
    GGML_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
    GGML_API struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);

    // Converts a flat index into coordinates
    GGML_API void    ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3);

    GGML_API int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
    GGML_API void    ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);

    GGML_API int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
    GGML_API void    ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value);

    GGML_API float   ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
    GGML_API void    ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);

    GGML_API float   ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
    GGML_API void    ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value);

    GGML_API void *  ggml_get_data    (const struct ggml_tensor * tensor);
    GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);

    GGML_API enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor);

    GGML_API const char *         ggml_get_name   (const struct ggml_tensor * tensor);
    GGML_API struct ggml_tensor * ggml_set_name   (      struct ggml_tensor * tensor, const char * name);
    GGML_ATTRIBUTE_FORMAT(2, 3)
    GGML_API struct ggml_tensor * ggml_format_name(      struct ggml_tensor * tensor, const char * fmt, ...);

    //
    // operations on tensors with backpropagation
    //

    GGML_API struct ggml_tensor * ggml_dup(
            struct ggml_context * ctx,
            struct ggml_tensor  * a);

    // in-place, returns view(a)
    GGML_API struct ggml_tensor * ggml_dup_inplace(
            struct ggml_context * ctx,
            struct ggml_tensor  * a);

    GGML_API struct ggml_tensor * ggml_add(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            struct ggml_tensor  * b);

    GGML_API struct ggml_tensor * ggml_add_inplace(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            struct ggml_tensor  * b);

    GGML_API struct ggml_tensor * ggml_add_cast(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            struct ggml_tensor  * b,
            enum   ggml_type      type);

    GGML_API struct ggml_tensor * ggml_add1(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            struct ggml_tensor  * b);

    GGML_API struct ggml_tensor * ggml_add1_inplace(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            struct ggml_tensor  * b);

    GGML_API struct ggml_tensor * ggml_acc(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            struct ggml_tensor  * b,
            size_t                nb1,
            size_t                nb2,
            size_t                nb3,
            size_t                offset);

    GGML_API struct ggml_tensor * ggml_acc_inplace(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            struct ggml_tensor  * b,
            size_t                nb1,
            size_t                nb2,
            size_t                nb3,
            size_t                offset);

    GGML_API struct ggml_tensor * ggml_sub(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            struct ggml_tensor  * b);

    GGML_API struct ggml_tensor * ggml_sub_inplace(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            struct ggml_tensor  * b);

    GGML_API struct ggml_tensor * ggml_mul(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            struct ggml_tensor  * b);

    GGML_API struct ggml_tensor * ggml_mul_inplace(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            struct ggml_tensor  * b);

    GGML_API struct ggml_tensor * ggml_div(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            struct ggml_tensor  * b);

    GGML_API struct ggml_tensor * ggml_div_inplace(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            struct ggml_tensor  * b);

    GGML_API struct ggml_tensor * ggml_sqr(
            struct ggml_context * ctx,
            struct ggml_tensor  * a);

    GGML_API struct ggml_tensor * ggml_sqr_inplace(
            struct ggml_context * ctx,
            struct ggml_tensor  * a);

    GGML_API struct ggml_tensor * ggml_sqrt(
            struct ggml_context * ctx,
            struct ggml_tensor  * a);

    GGML_API struct ggml_tensor * ggml_sqrt_inplace(
            struct ggml_context * ctx,
            struct ggml_tensor  * a);

    GGML_API struct ggml_tensor * ggml_log(
            struct ggml_context * ctx,
            struct ggml_tensor  * a);

    GGML_API struct ggml_tensor * ggml_log_inplace(
            struct ggml_context * ctx,
            struct ggml_tensor  * a);

    // return scalar
    GGML_API struct ggml_tensor * ggml_sum(
            struct ggml_context * ctx,
            struct ggml_tensor  * a);

    // sums along rows, with input shape [a,b,c,d] return shape [1,b,c,d]
    GGML_API struct ggml_tensor * ggml_sum_rows(
            struct ggml_context * ctx,
            struct ggml_tensor  * a);

    // mean along rows
    GGML_API struct ggml_tensor * ggml_mean(
            struct ggml_context * ctx,
            struct ggml_tensor  * a);

    // argmax along rows
    GGML_API struct ggml_tensor * ggml_argmax(
            struct ggml_context * ctx,
            struct ggml_tensor  * a);

    // if a is the same shape as b, and a is not parameter, return a
    // otherwise, return a new tensor: repeat(a) to fit in b
    GGML_API struct ggml_tensor * ggml_repeat(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            struct ggml_tensor  * b);

    // sums repetitions in a into shape of b
    GGML_API struct ggml_tensor * ggml_repeat_back(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            struct ggml_tensor  * b);

    // concat a and b on dim 2
    // used in stable-diffusion
    GGML_API struct ggml_tensor * ggml_concat(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            struct ggml_tensor  * b);

    GGML_API struct ggml_tensor * ggml_abs(
            struct ggml_context * ctx,
            struct ggml_tensor  * a);

    GGML_API struct ggml_tensor * ggml_abs_inplace(
            struct ggml_context * ctx,
            struct ggml_tensor  * a);

    GGML_API struct ggml_tensor * ggml_sgn(
            struct ggml_context * ctx,
            struct ggml_tensor  * a);

    GGML_API struct ggml_tensor * ggml_sgn_inplace(
            struct ggml_context * ctx,
            struct ggml_tensor  * a);

    GGML_API struct ggml_tensor * ggml_neg(
            struct ggml_context * ctx,
            struct ggml_tensor  * a);

    GGML_API struct ggml_tensor * ggml_neg_inplace(
            struct ggml_context * ctx,
            struct ggml_tensor  * a);

    GGML_API struct ggml_tensor * ggml_step(
            struct ggml_context * ctx,
            struct ggml_tensor  * a);

    GGML_API struct ggml_tensor * ggml_step_inplace(
            struct ggml_context * ctx,
            struct ggml_tensor  * a);

    GGML_API struct ggml_tensor * ggml_tanh(
            struct ggml_context * ctx,
            struct ggml_tensor  * a);

    GGML_API struct ggml_tensor * ggml_tanh_inplace(
            struct ggml_context * ctx,
            struct ggml_tensor  * a);

    GGML_API struct ggml_tensor * ggml_elu(
            struct ggml_context * ctx,
            struct ggml_tensor  * a);

    GGML_API struct ggml_tensor * ggml_elu_inplace(
            struct ggml_context * ctx,
            struct ggml_tensor  * a);

    GGML_API struct ggml_tensor * ggml_relu(
            struct ggml_context * ctx,
            struct ggml_tensor  * a);

    GGML_API struct ggml_tensor * ggml_relu_inplace(
            struct ggml_context * ctx,
            struct ggml_tensor  * a);

    // TODO: double-check this computation is correct
    GGML_API struct ggml_tensor * ggml_gelu(
            struct ggml_context * ctx,
            struct ggml_tensor  * a);

    GGML_API struct ggml_tensor * ggml_gelu_inplace(
            struct ggml_context * ctx,
            struct ggml_tensor  * a);

    GGML_API struct ggml_tensor * ggml_gelu_quick(
            struct ggml_context * ctx,
            struct ggml_tensor  * a);

    GGML_API struct ggml_tensor * ggml_gelu_quick_inplace(
            struct ggml_context * ctx,
            struct ggml_tensor  * a);

    GGML_API struct ggml_tensor * ggml_silu(
            struct ggml_context * ctx,
            struct ggml_tensor  * a);

    GGML_API struct ggml_tensor * ggml_silu_inplace(
            struct ggml_context * ctx,
            struct ggml_tensor  * a);

    // a - x
    // b - dy
    GGML_API struct ggml_tensor * ggml_silu_back(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            struct ggml_tensor  * b);

    // normalize along rows
    GGML_API struct ggml_tensor * ggml_norm(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            float                 eps);

    GGML_API struct ggml_tensor * ggml_norm_inplace(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            float                 eps);

    GGML_API struct ggml_tensor * ggml_rms_norm(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            float                 eps);

    GGML_API struct ggml_tensor * ggml_rms_norm_inplace(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            float                 eps);

    // group normalize along ne0*ne1*n_groups
    // used in stable-diffusion
    // TODO: eps is hardcoded to 1e-6 for now
    GGML_API struct ggml_tensor * ggml_group_norm(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            int                   n_groups);

    GGML_API struct ggml_tensor * ggml_group_norm_inplace(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            int                   n_groups);

    // a - x
    // b - dy
    GGML_API struct ggml_tensor * ggml_rms_norm_back(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            struct ggml_tensor  * b,
            float                 eps);

    // A: n columns, m rows
    // B: n columns, p rows  (i.e. we transpose it internally)
    // result is m columns, p rows
    GGML_API struct ggml_tensor * ggml_mul_mat(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            struct ggml_tensor  * b);

    // A: m columns, n rows,
    // B: p columns, n rows,
    // result is m columns, p rows
    GGML_API struct ggml_tensor * ggml_out_prod(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            struct ggml_tensor  * b);

    //
    // operations on tensors without backpropagation
    //

    GGML_API struct ggml_tensor * ggml_scale(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            struct ggml_tensor  * b);

    // in-place, returns view(a)
    GGML_API struct ggml_tensor * ggml_scale_inplace(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            struct ggml_tensor  * b);

    // b -> view(a,offset,nb1,nb2,3), return modified a
    GGML_API struct ggml_tensor * ggml_set(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            struct ggml_tensor  * b,
            size_t                nb1,
            size_t                nb2,
            size_t                nb3,
            size_t                offset);

    // b -> view(a,offset,nb1,nb2,3), return view(a)
    GGML_API struct ggml_tensor * ggml_set_inplace(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            struct ggml_tensor  * b,
            size_t                nb1,
            size_t                nb2,
            size_t                nb3,
            size_t                offset);

    GGML_API struct ggml_tensor * ggml_set_1d(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            struct ggml_tensor  * b,
            size_t                offset);

    GGML_API struct ggml_tensor * ggml_set_1d_inplace(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            struct ggml_tensor  * b,
            size_t                offset);

    // b -> view(a,offset,nb1,nb2,3), return modified a
    GGML_API struct ggml_tensor * ggml_set_2d(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            struct ggml_tensor  * b,
            size_t                nb1,
            size_t                offset);

    // b -> view(a,offset,nb1,nb2,3), return view(a)
    GGML_API struct ggml_tensor * ggml_set_2d_inplace(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            struct ggml_tensor  * b,
            size_t                nb1,
            size_t                offset);

    // a -> b, return view(b)
    GGML_API struct ggml_tensor * ggml_cpy(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            struct ggml_tensor  * b);

    // a -> b, in-place, return view(b)
    GGML_API struct ggml_tensor * ggml_cpy_inplace(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            struct ggml_tensor  * b);

    // make contiguous
    GGML_API struct ggml_tensor * ggml_cont(
            struct ggml_context * ctx,
            struct ggml_tensor  * a);

    // make contiguous, in-place
    GGML_API struct ggml_tensor * ggml_cont_inplace(
            struct ggml_context * ctx,
            struct ggml_tensor  * a);

    // make contiguous, with new shape
    GGML_API struct ggml_tensor * ggml_cont_1d(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            int64_t               ne0);

    GGML_API struct ggml_tensor * ggml_cont_2d(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            int64_t               ne0,
            int64_t               ne1);

    GGML_API struct ggml_tensor * ggml_cont_3d(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            int64_t               ne0,
            int64_t               ne1,
            int64_t               ne2);

    GGML_API struct ggml_tensor * ggml_cont_4d(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            int64_t               ne0,
            int64_t               ne1,
            int64_t               ne2,
            int64_t               ne3);

    // return view(a), b specifies the new shape
    // TODO: when we start computing gradient, make a copy instead of view
    GGML_API struct ggml_tensor * ggml_reshape(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            struct ggml_tensor  * b);

    // return view(a)
    // TODO: when we start computing gradient, make a copy instead of view
    GGML_API struct ggml_tensor * ggml_reshape_1d(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            int64_t               ne0);

    GGML_API struct ggml_tensor * ggml_reshape_2d(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            int64_t               ne0,
            int64_t               ne1);

    // return view(a)
    // TODO: when we start computing gradient, make a copy instead of view
    GGML_API struct ggml_tensor * ggml_reshape_3d(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            int64_t               ne0,
            int64_t               ne1,
            int64_t               ne2);

    GGML_API struct ggml_tensor * ggml_reshape_4d(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            int64_t               ne0,
            int64_t               ne1,
            int64_t               ne2,
            int64_t               ne3);

    // offset in bytes
    GGML_API struct ggml_tensor * ggml_view_1d(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            int64_t               ne0,
            size_t                offset);

    GGML_API struct ggml_tensor * ggml_view_2d(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            int64_t               ne0,
            int64_t               ne1,
            size_t                nb1, // row stride in bytes
            size_t                offset);

    GGML_API struct ggml_tensor * ggml_view_3d(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            int64_t               ne0,
            int64_t               ne1,
            int64_t               ne2,
            size_t                nb1, // row   stride in bytes
            size_t                nb2, // slice stride in bytes
            size_t                offset);

    GGML_API struct ggml_tensor * ggml_view_4d(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            int64_t               ne0,
            int64_t               ne1,
            int64_t               ne2,
            int64_t               ne3,
            size_t                nb1, // row   stride in bytes
            size_t                nb2, // slice stride in bytes
            size_t                nb3,
            size_t                offset);

    GGML_API struct ggml_tensor * ggml_permute(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            int                   axis0,
            int                   axis1,
            int                   axis2,
            int                   axis3);

    // alias for ggml_permute(ctx, a, 1, 0, 2, 3)
    GGML_API struct ggml_tensor * ggml_transpose(
            struct ggml_context * ctx,
            struct ggml_tensor  * a);

    GGML_API struct ggml_tensor * ggml_get_rows(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            struct ggml_tensor  * b);

    GGML_API struct ggml_tensor * ggml_get_rows_back(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            struct ggml_tensor  * b,
            struct ggml_tensor  * c);

    GGML_API struct ggml_tensor * ggml_diag(
        struct ggml_context     * ctx,
        struct ggml_tensor      * a);

    // set elements above the diagonal to -INF
    GGML_API struct ggml_tensor * ggml_diag_mask_inf(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            int                   n_past);

    // in-place, returns view(a)
    GGML_API struct ggml_tensor * ggml_diag_mask_inf_inplace(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            int                   n_past);

    // set elements above the diagonal to 0
    GGML_API struct ggml_tensor * ggml_diag_mask_zero(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            int                   n_past);

    // in-place, returns view(a)
    GGML_API struct ggml_tensor * ggml_diag_mask_zero_inplace(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            int                   n_past);

    GGML_API struct ggml_tensor * ggml_soft_max(
            struct ggml_context * ctx,
            struct ggml_tensor  * a);

    // in-place, returns view(a)
    GGML_API struct ggml_tensor * ggml_soft_max_inplace(
            struct ggml_context * ctx,
            struct ggml_tensor  * a);

    GGML_API struct ggml_tensor * ggml_soft_max_back(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            struct ggml_tensor  * b);

    // in-place, returns view(a)
    GGML_API struct ggml_tensor * ggml_soft_max_back_inplace(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            struct ggml_tensor  * b);

    // rotary position embedding
    // if mode & 1 == 1, skip n_past elements (DEPRECATED)
    // if mode & 2 == 1, GPT-NeoX style
    // if mode & 4 == 1, ChatGLM style
    //
    // b is an int32 vector with size a->ne[2], it contains the positions
    GGML_API struct ggml_tensor * ggml_rope(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            struct ggml_tensor  * b,
            int                   n_dims,
            int                   mode,
            int                   n_ctx);

    // in-place, returns view(a)
    GGML_API struct ggml_tensor * ggml_rope_inplace(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            struct ggml_tensor  * b,
            int                   n_dims,
            int                   mode,
            int                   n_ctx);

    // custom RoPE
    GGML_API struct ggml_tensor * ggml_rope_custom(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            struct ggml_tensor  * b,
            int                   n_dims,
            int                   mode,
            int                   n_ctx,
            float                 freq_base,
            float                 freq_scale);

    // in-place, returns view(a)
    GGML_API struct ggml_tensor * ggml_rope_custom_inplace(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            struct ggml_tensor  * b,
            int                   n_dims,
            int                   mode,
            int                   n_ctx,
            float                 freq_base,
            float                 freq_scale);

    // xPos RoPE, in-place, returns view(a)
    GGML_API struct ggml_tensor * ggml_rope_xpos_inplace(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            struct ggml_tensor  * b,
            int                   n_dims,
            float                 base,
            bool                  down);

    // rotary position embedding backward, i.e compute dx from dy
    // a - dy
    GGML_API struct ggml_tensor * ggml_rope_back(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            struct ggml_tensor  * b,
            int                   n_dims,
            int                   mode,
            int                   n_ctx,
            float                 freq_base,
            float                 freq_scale,
            float                 xpos_base,
            bool                  xpos_down);

    // alibi position embedding
    // in-place, returns view(a)
    GGML_API struct ggml_tensor * ggml_alibi(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            int                   n_past,
            int                   n_head,
            float                 bias_max);

    // clamp
    // in-place, returns view(a)
    GGML_API struct ggml_tensor * ggml_clamp(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            float                 min,
            float                 max);

    GGML_API struct ggml_tensor * ggml_conv_1d(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            struct ggml_tensor  * b,
            int                   s0,  // stride
            int                   p0,  // padding
            int                   d0); // dilation

    // conv_1d with padding = half
    // alias for ggml_conv_1d(a, b, s, a->ne[0]/2, d)
    GGML_API struct ggml_tensor* ggml_conv_1d_ph(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            struct ggml_tensor  * b,
            int                   s,
            int                   d);

    GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            struct ggml_tensor  * b,
            int                   s0,
            int                   p0,
            int                   d0);

    GGML_API struct ggml_tensor * ggml_conv_2d(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            struct ggml_tensor  * b,
            int                   s0,
            int                   s1,
            int                   p0,
            int                   p1,
            int                   d0,
            int                   d1);


    // kernel size is a->ne[0] x a->ne[1]
    // stride is equal to kernel size
    // padding is zero
    // example:
    // a:     16   16    3  768
    // b:   1024 1024    3    1
    // res:   64   64  768    1
    // used in sam
    GGML_API struct ggml_tensor * ggml_conv_2d_sk_p0(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            struct ggml_tensor  * b);

    // kernel size is a->ne[0] x a->ne[1]
    // stride is 1
    // padding is half
    // example:
    // a:      3    3    256  256
    // b:     64   64    256    1
    // res:   64   64    256    1
    // used in sam
    GGML_API struct ggml_tensor * ggml_conv_2d_s1_ph(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            struct ggml_tensor  * b);

    GGML_API struct ggml_tensor * ggml_conv_transpose_2d_p0(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            struct ggml_tensor  * b,
            int                   stride);

    enum ggml_op_pool {
        GGML_OP_POOL_MAX,
        GGML_OP_POOL_AVG,
        GGML_OP_POOL_COUNT,
    };

    GGML_API struct ggml_tensor * ggml_pool_1d(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            enum ggml_op_pool     op,
            int                   k0, // kernel size
            int                   s0, // stride
            int                   p0); // padding

    GGML_API struct ggml_tensor * ggml_pool_2d(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            enum ggml_op_pool     op,
            int                   k0,
            int                   k1,
            int                   s0,
            int                   s1,
            int                   p0,
            int                   p1);

    // nearest interpolate
    // used in stable-diffusion
    GGML_API struct ggml_tensor * ggml_upscale(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            int                   scale_factor);

    GGML_API struct ggml_tensor * ggml_flash_attn(
            struct ggml_context * ctx,
            struct ggml_tensor  * q,
            struct ggml_tensor  * k,
            struct ggml_tensor  * v,
            bool                  masked);

    GGML_API struct ggml_tensor * ggml_flash_attn_back(
           struct ggml_context * ctx,
           struct ggml_tensor  * q,
           struct ggml_tensor  * k,
           struct ggml_tensor  * v,
           struct ggml_tensor  * d,
           bool                  masked);

    GGML_API struct ggml_tensor * ggml_flash_ff(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            struct ggml_tensor  * b0,
            struct ggml_tensor  * b1,
            struct ggml_tensor  * c0,
            struct ggml_tensor  * c1);

    // partition into non-overlapping windows with padding if needed
    // example:
    // a:   768   64   64    1
    // w:    14
    // res: 768   14   14    25
    // used in sam
    GGML_API struct ggml_tensor * ggml_win_part(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            int                   w);

    // reverse of ggml_win_part
    // used in sam
    GGML_API struct ggml_tensor * ggml_win_unpart(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            int                   w0,
            int                   h0,
            int                   w);

    GGML_API struct ggml_tensor * ggml_unary(
            struct ggml_context * ctx,
             struct ggml_tensor * a,
             enum ggml_unary_op op);

    GGML_API struct ggml_tensor * ggml_unary_inplace(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        enum ggml_unary_op op);

    // used in sam
    GGML_API struct ggml_tensor * ggml_get_rel_pos(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            int                   qh,
            int                   kh);

    // used in sam

    GGML_API struct ggml_tensor * ggml_add_rel_pos(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            struct ggml_tensor  * pw,
            struct ggml_tensor  * ph);

    GGML_API struct ggml_tensor * ggml_add_rel_pos_inplace(
            struct ggml_context * ctx,
            struct ggml_tensor  * a,
            struct ggml_tensor  * pw,
            struct ggml_tensor  * ph);

    // custom operators

    typedef void (*ggml_unary_op_f32_t) (const int, float *, const float *);
    typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *);

    typedef void (*ggml_custom1_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *);
    typedef void (*ggml_custom2_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
    typedef void (*ggml_custom3_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);

    GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_f32(
            struct ggml_context        * ctx,
            struct ggml_tensor         * a,
                   ggml_unary_op_f32_t   fun),
        "use ggml_map_custom1 instead");

    GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_inplace_f32(
            struct ggml_context        * ctx,
            struct ggml_tensor         * a,
                   ggml_unary_op_f32_t   fun),
        "use ggml_map_custom1_inplace instead");

    GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_f32(
            struct ggml_context         * ctx,
            struct ggml_tensor          * a,
            struct ggml_tensor          * b,
                   ggml_binary_op_f32_t   fun),
        "use ggml_map_custom2 instead");

    GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_inplace_f32(
            struct ggml_context         * ctx,
            struct ggml_tensor          * a,
            struct ggml_tensor          * b,
                   ggml_binary_op_f32_t   fun),
        "use ggml_map_custom2_inplace instead");

    GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_f32(
            struct ggml_context          * ctx,
            struct ggml_tensor           * a,
                   ggml_custom1_op_f32_t   fun),
        "use ggml_map_custom1 instead");

    GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_inplace_f32(
            struct ggml_context          * ctx,
            struct ggml_tensor           * a,
                   ggml_custom1_op_f32_t   fun),
        "use ggml_map_custom1_inplace instead");

    GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_f32(
            struct ggml_context          * ctx,
            struct ggml_tensor           * a,
            struct ggml_tensor           * b,
                   ggml_custom2_op_f32_t   fun),
        "use ggml_map_custom2 instead");

    GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_inplace_f32(
            struct ggml_context          * ctx,
            struct ggml_tensor           * a,
            struct ggml_tensor           * b,
                   ggml_custom2_op_f32_t   fun),
        "use ggml_map_custom2_inplace instead");

    GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_f32(
            struct ggml_context          * ctx,
            struct ggml_tensor           * a,
            struct ggml_tensor           * b,
            struct ggml_tensor           * c,
                   ggml_custom3_op_f32_t   fun),
        "use ggml_map_custom3 instead");

    GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_inplace_f32(
            struct ggml_context          * ctx,
            struct ggml_tensor           * a,
            struct ggml_tensor           * b,
            struct ggml_tensor           * c,
                   ggml_custom3_op_f32_t   fun),
        "use ggml_map_custom3_inplace instead");

    // custom operators v2

    typedef void (*ggml_custom1_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, int ith, int nth, void * userdata);
    typedef void (*ggml_custom2_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, int ith, int nth, void * userdata);
    typedef void (*ggml_custom3_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, const struct ggml_tensor * c, int ith, int nth, void * userdata);

    #define GGML_N_TASKS_MAX -1

    GGML_API struct ggml_tensor * ggml_map_custom1(
            struct ggml_context   * ctx,
            struct ggml_tensor    * a,
            ggml_custom1_op_t       fun,
            int                     n_tasks,
            void                  * userdata);

    GGML_API struct ggml_tensor * ggml_map_custom1_inplace(
            struct ggml_context   * ctx,
            struct ggml_tensor    * a,
            ggml_custom1_op_t       fun,
            int                     n_tasks,
            void                  * userdata);

    GGML_API struct ggml_tensor * ggml_map_custom2(
            struct ggml_context   * ctx,
            struct ggml_tensor    * a,
            struct ggml_tensor    * b,
            ggml_custom2_op_t       fun,
            int                     n_tasks,
            void                  * userdata);

    GGML_API struct ggml_tensor * ggml_map_custom2_inplace(
            struct ggml_context   * ctx,
            struct ggml_tensor    * a,
            struct ggml_tensor    * b,
            ggml_custom2_op_t       fun,
            int                     n_tasks,
            void                  * userdata);

    GGML_API struct ggml_tensor * ggml_map_custom3(
            struct ggml_context   * ctx,
            struct ggml_tensor    * a,
            struct ggml_tensor    * b,
            struct ggml_tensor    * c,
            ggml_custom3_op_t       fun,
            int                     n_tasks,
            void                  * userdata);

    GGML_API struct ggml_tensor * ggml_map_custom3_inplace(
            struct ggml_context   * ctx,
            struct ggml_tensor    * a,
            struct ggml_tensor    * b,
            struct ggml_tensor    * c,
            ggml_custom3_op_t       fun,
            int                     n_tasks,
            void                  * userdata);

    // loss function

    GGML_API struct ggml_tensor * ggml_cross_entropy_loss(
            struct ggml_context         * ctx,
            struct ggml_tensor          * a,
            struct ggml_tensor          * b);

    GGML_API struct ggml_tensor * ggml_cross_entropy_loss_back(
            struct ggml_context         * ctx,
            struct ggml_tensor          * a,
            struct ggml_tensor          * b,
            struct ggml_tensor          * c);

    //
    // automatic differentiation
    //

    GGML_API void ggml_set_param(
            struct ggml_context * ctx,
            struct ggml_tensor  * tensor);


    GGML_API void ggml_build_forward_expand (struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
    GGML_API void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep);

    GGML_API struct ggml_cgraph ggml_build_forward (struct ggml_tensor * tensor);
    GGML_API struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep);

    // graph allocation in a context
    GGML_API struct ggml_cgraph * ggml_new_graph        (struct ggml_context * ctx);
    GGML_API struct ggml_cgraph * ggml_build_forward_ctx(struct ggml_context * ctx, struct ggml_tensor * tensor);
    GGML_API size_t ggml_graph_overhead(void);

    // ggml_graph_plan() has to be called before ggml_graph_compute()
    // when plan.work_size > 0, caller must allocate memory for plan.work_data
    GGML_API struct ggml_cplan ggml_graph_plan   (struct ggml_cgraph * cgraph, int n_threads /*= GGML_DEFAULT_N_THREADS*/);
    GGML_API               int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
    GGML_API              void ggml_graph_reset  (struct ggml_cgraph * cgraph);

    // same as ggml_graph_compute() but the work data is allocated as a part of the context
    // note: the drawback of this API is that you must have ensured that the context has enough memory for the work data
    GGML_API void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads);

    GGML_API struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name);

    GGML_API void               ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname);
    GGML_API struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval);

    // print info and performance information for the graph
    GGML_API void ggml_graph_print(const struct ggml_cgraph * cgraph);

    // dump the graph into a file using the dot format
    GGML_API void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);

    // build gradient checkpointing backward graph gb for gf using provided checkpoints
    // gb_tmp will contain original backward graph with rewritten backward process nodes,
    // but without the second forward pass nodes.
    GGML_API void ggml_build_backward_gradient_checkpointing(
            struct ggml_context   * ctx,
            struct ggml_cgraph    * gf,
            struct ggml_cgraph    * gb,
            struct ggml_cgraph    * gb_tmp,
            struct ggml_tensor  * * checkpoints,
            int                     n_checkpoints);
    //
    // optimization
    //

    // optimization methods
    enum ggml_opt_type {
        GGML_OPT_ADAM,
        GGML_OPT_LBFGS,
    };

    // linesearch methods
    enum ggml_linesearch {
        GGML_LINESEARCH_DEFAULT = 1,

        GGML_LINESEARCH_BACKTRACKING_ARMIJO       = 0,
        GGML_LINESEARCH_BACKTRACKING_WOLFE        = 1,
        GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE = 2,
    };

    // optimization return values
    enum ggml_opt_result {
        GGML_OPT_OK = 0,
        GGML_OPT_DID_NOT_CONVERGE,
        GGML_OPT_NO_CONTEXT,
        GGML_OPT_INVALID_WOLFE,
        GGML_OPT_FAIL,
        GGML_OPT_CANCEL,

        GGML_LINESEARCH_FAIL = -128,
        GGML_LINESEARCH_MINIMUM_STEP,
        GGML_LINESEARCH_MAXIMUM_STEP,
        GGML_LINESEARCH_MAXIMUM_ITERATIONS,
        GGML_LINESEARCH_INVALID_PARAMETERS,
    };

    typedef void (*ggml_opt_callback)(void * data, int accum_step, float * sched, bool * cancel);
    typedef void (*ggml_log_callback)(enum ggml_log_level level, const char * text, void * user_data);

    // optimization parameters
    //
    //   see ggml.c (ggml_opt_default_params) for default values
    //
    struct ggml_opt_params {
        enum ggml_opt_type type;

        int n_threads;

        // delta-based convergence test
        //
        //   if past == 0 - disabled
        //   if past > 0:
        //     stop if |f(x) - f(x_past)| < delta * max(1, |f(x)|)
        //
        int past;
        float delta;

        // maximum number of iterations without improvement
        //
        //   if 0 - disabled
        //   if > 0:
        //     assume convergence if no cost improvement in this number of iterations
        //
        int max_no_improvement;

        bool print_forward_graph;
        bool print_backward_graph;

        int n_gradient_accumulation;

        // ADAM parameters
        struct {
            int n_iter;

            float sched; // schedule multiplier (fixed, decay or warmup)
            float decay; // weight decay for AdamW, use 0.0f to disable
            int   decay_min_ndim; // minimum number of tensor dimension to apply weight decay
            float alpha; // learning rate
            float beta1;
            float beta2;
            float eps;   // epsilon for numerical stability
            float eps_f; // epsilon for convergence test
            float eps_g; // epsilon for convergence test
            float gclip; // gradient clipping
        } adam;

        // LBFGS parameters
        struct {
            int m; // number of corrections to approximate the inv. Hessian
            int n_iter;
            int max_linesearch;

            float eps;      // convergence tolerance
            float ftol;     // line search tolerance
            float wolfe;
            float min_step;
            float max_step;

            enum ggml_linesearch linesearch;
        } lbfgs;
    };

    struct ggml_opt_context {
        struct ggml_context * ctx;
        struct ggml_opt_params params;

        int iter;
        int64_t nx; // number of parameter elements

        bool just_initialized;

        float loss_before;
        float loss_after;

        struct {
            struct ggml_tensor * g;  // current gradient
            struct ggml_tensor * m;  // first moment
            struct ggml_tensor * v;  // second moment
            struct ggml_tensor * pf; // past function values
            float fx_best;
            float fx_prev;
            int n_no_improvement;
        } adam;

        struct {
            struct ggml_tensor * x;    // current parameters
            struct ggml_tensor * xp;   // previous parameters
            struct ggml_tensor * g;    // current gradient
            struct ggml_tensor * gp;   // previous gradient
            struct ggml_tensor * d;    // search direction
            struct ggml_tensor * pf;   // past function values
            struct ggml_tensor * lmal; // the L-BFGS memory alpha
            struct ggml_tensor * lmys; // the L-BFGS memory ys
            struct ggml_tensor * lms;  // the L-BFGS memory s
            struct ggml_tensor * lmy;  // the L-BFGS memory y
            float fx_best;
            float step;
            int j;
            int k;
            int end;
            int n_no_improvement;
        } lbfgs;
    };

    GGML_API struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type);

    // optimize the function defined by the tensor f
    GGML_API enum ggml_opt_result ggml_opt(
            struct ggml_context * ctx,
            struct ggml_opt_params params,
            struct ggml_tensor * f);

    // initialize optimizer context
    GGML_API void ggml_opt_init(
            struct ggml_context     * ctx,
            struct ggml_opt_context * opt,
            struct ggml_opt_params    params,
            int64_t                   nx);

    // continue optimizing the function defined by the tensor f
    GGML_API enum ggml_opt_result ggml_opt_resume(
            struct ggml_context * ctx,
            struct ggml_opt_context * opt,
            struct ggml_tensor * f);

    // continue optimizing the function defined by the tensor f
    GGML_API enum ggml_opt_result ggml_opt_resume_g(
            struct ggml_context * ctx,
            struct ggml_opt_context * opt,
            struct ggml_tensor * f,
            struct ggml_cgraph * gf,
            struct ggml_cgraph * gb,
            ggml_opt_callback callback,
            void * callback_data);

    //
    // quantization
    //

    GGML_API size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist);
    GGML_API size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist);
    GGML_API size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist);
    GGML_API size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist);
    GGML_API size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist);

    GGML_API size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist);

    //
    // gguf
    //

    enum gguf_type {
        GGUF_TYPE_UINT8   = 0,
        GGUF_TYPE_INT8    = 1,
        GGUF_TYPE_UINT16  = 2,
        GGUF_TYPE_INT16   = 3,
        GGUF_TYPE_UINT32  = 4,
        GGUF_TYPE_INT32   = 5,
        GGUF_TYPE_FLOAT32 = 6,
        GGUF_TYPE_BOOL    = 7,
        GGUF_TYPE_STRING  = 8,
        GGUF_TYPE_ARRAY   = 9,
        GGUF_TYPE_UINT64  = 10,
        GGUF_TYPE_INT64   = 11,
        GGUF_TYPE_FLOAT64 = 12,
        GGUF_TYPE_COUNT,       // marks the end of the enum
    };

    struct gguf_context;

    struct gguf_init_params {
        bool no_alloc;

        // if not NULL, create a ggml_context and allocate the tensor data in it
        struct ggml_context ** ctx;
    };

    GGML_API struct gguf_context * gguf_init_empty(void);
    GGML_API struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params);
    //GGML_API struct gguf_context * gguf_init_from_buffer(..);

    GGML_API void gguf_free(struct gguf_context * ctx);

    GGML_API const char * gguf_type_name(enum gguf_type type);

    GGML_API int    gguf_get_version    (const struct gguf_context * ctx);
    GGML_API size_t gguf_get_alignment  (const struct gguf_context * ctx);
    GGML_API size_t gguf_get_data_offset(const struct gguf_context * ctx);
    GGML_API void * gguf_get_data       (const struct gguf_context * ctx);

    GGML_API int          gguf_get_n_kv(const struct gguf_context * ctx);
    GGML_API int          gguf_find_key(const struct gguf_context * ctx, const char * key);
    GGML_API const char * gguf_get_key (const struct gguf_context * ctx, int key_id);

    GGML_API enum gguf_type gguf_get_kv_type (const struct gguf_context * ctx, int key_id);
    GGML_API enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id);

    // will abort if the wrong type is used for the key
    GGML_API uint8_t      gguf_get_val_u8  (const struct gguf_context * ctx, int key_id);
    GGML_API int8_t       gguf_get_val_i8  (const struct gguf_context * ctx, int key_id);
    GGML_API uint16_t     gguf_get_val_u16 (const struct gguf_context * ctx, int key_id);
    GGML_API int16_t      gguf_get_val_i16 (const struct gguf_context * ctx, int key_id);
    GGML_API uint32_t     gguf_get_val_u32 (const struct gguf_context * ctx, int key_id);
    GGML_API int32_t      gguf_get_val_i32 (const struct gguf_context * ctx, int key_id);
    GGML_API float        gguf_get_val_f32 (const struct gguf_context * ctx, int key_id);
    GGML_API uint64_t     gguf_get_val_u64 (const struct gguf_context * ctx, int key_id);
    GGML_API int64_t      gguf_get_val_i64 (const struct gguf_context * ctx, int key_id);
    GGML_API double       gguf_get_val_f64 (const struct gguf_context * ctx, int key_id);
    GGML_API bool         gguf_get_val_bool(const struct gguf_context * ctx, int key_id);
    GGML_API const char * gguf_get_val_str (const struct gguf_context * ctx, int key_id);
    GGML_API int          gguf_get_arr_n   (const struct gguf_context * ctx, int key_id);
    GGML_API const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id);
    GGML_API const char * gguf_get_arr_str (const struct gguf_context * ctx, int key_id, int i);

    GGML_API int    gguf_get_n_tensors    (const struct gguf_context * ctx);
    GGML_API int    gguf_find_tensor      (const struct gguf_context * ctx, const char * name);
    GGML_API size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i);
    GGML_API char * gguf_get_tensor_name  (const struct gguf_context * ctx, int i);

    // overrides existing values or adds a new one
    GGML_API void gguf_set_val_u8  (struct gguf_context * ctx, const char * key, uint8_t  val);
    GGML_API void gguf_set_val_i8  (struct gguf_context * ctx, const char * key, int8_t   val);
    GGML_API void gguf_set_val_u16 (struct gguf_context * ctx, const char * key, uint16_t val);
    GGML_API void gguf_set_val_i16 (struct gguf_context * ctx, const char * key, int16_t  val);
    GGML_API void gguf_set_val_u32 (struct gguf_context * ctx, const char * key, uint32_t val);
    GGML_API void gguf_set_val_i32 (struct gguf_context * ctx, const char * key, int32_t  val);
    GGML_API void gguf_set_val_f32 (struct gguf_context * ctx, const char * key, float    val);
    GGML_API void gguf_set_val_u64 (struct gguf_context * ctx, const char * key, uint64_t val);
    GGML_API void gguf_set_val_i64 (struct gguf_context * ctx, const char * key, int64_t  val);
    GGML_API void gguf_set_val_f64 (struct gguf_context * ctx, const char * key, double   val);
    GGML_API void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool     val);
    GGML_API void gguf_set_val_str (struct gguf_context * ctx, const char * key, const char * val);
    GGML_API void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n);
    GGML_API void gguf_set_arr_str (struct gguf_context * ctx, const char * key, const char ** data, int n);

    // set or add KV pairs from another context
    GGML_API void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src);

    // manage tensor info
    GGML_API void gguf_add_tensor(struct gguf_context * ctx, const struct ggml_tensor * tensor);
    GGML_API void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type);
    GGML_API void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size);

    // writing gguf files can be done in 2 ways:
    //
    // - write the entire gguf_context to a binary file in a single pass:
    //
    //   gguf_write_to_file(ctx, fname);
    //
    // - first prepare a file with a placeholder for the meta data, write the tensor data, then write the meta data:
    //
    //   FILE * f = fopen(fname, "wb");
    //   fseek(f, gguf_get_meta_size(ctx), SEEK_SET);
    //   fwrite(f, ...);
    //   void * data = gguf_meta_get_meta_data(ctx);
    //   fseek(f, 0, SEEK_SET);
    //   fwrite(f, data, gguf_get_meta_size(ctx));
    //   free(data);
    //   fclose(f);
    //

    // write the entire context to a binary file
    GGML_API void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta);

    // get the size in bytes of the meta data (header, kv pairs, tensor info) including padding
    GGML_API size_t gguf_get_meta_size(const struct gguf_context * ctx);
    GGML_API void   gguf_get_meta_data(const struct gguf_context * ctx, void * data);

    //
    // system info
    //

    GGML_API int ggml_cpu_has_avx        (void);
    GGML_API int ggml_cpu_has_avx2       (void);
    GGML_API int ggml_cpu_has_avx512     (void);
    GGML_API int ggml_cpu_has_avx512_vbmi(void);
    GGML_API int ggml_cpu_has_avx512_vnni(void);
    GGML_API int ggml_cpu_has_fma        (void);
    GGML_API int ggml_cpu_has_neon       (void);
    GGML_API int ggml_cpu_has_arm_fma    (void);
    GGML_API int ggml_cpu_has_metal      (void);
    GGML_API int ggml_cpu_has_f16c       (void);
    GGML_API int ggml_cpu_has_fp16_va    (void);
    GGML_API int ggml_cpu_has_wasm_simd  (void);
    GGML_API int ggml_cpu_has_blas       (void);
    GGML_API int ggml_cpu_has_cublas     (void);
    GGML_API int ggml_cpu_has_clblast    (void);
    GGML_API int ggml_cpu_has_gpublas    (void);
    GGML_API int ggml_cpu_has_sse3       (void);
    GGML_API int ggml_cpu_has_ssse3      (void);
    GGML_API int ggml_cpu_has_vsx        (void);

    //
    // Internal types and functions exposed for tests and benchmarks
    //

#ifdef  __cplusplus
// restrict not standard in C++
#define GGML_RESTRICT
#else
#define GGML_RESTRICT restrict
#endif
    typedef void (*ggml_to_float_t)  (const void  * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
    typedef void (*ggml_from_float_t)(const float * GGML_RESTRICT x, void  * GGML_RESTRICT y, int k);
    typedef void (*ggml_vec_dot_t)   (const int n, float * GGML_RESTRICT s, const void * GGML_RESTRICT x, const void * GGML_RESTRICT y);

    typedef struct {
        const char      * type_name;
        int               blck_size;
        size_t            type_size;
        bool              is_quantized;
        ggml_to_float_t   to_float;
        ggml_from_float_t from_float;
        ggml_from_float_t from_float_reference;
        ggml_vec_dot_t    vec_dot;
        enum ggml_type    vec_dot_type;
    } ggml_type_traits_t;

    GGML_API ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type);

#ifdef  __cplusplus
}
#endif