Spaces:
Build error
Build error
File size: 23,043 Bytes
3e5595b b439a8f 3e5595b 81bf9b4 b439a8f 3e5595b b439a8f 3e5595b b439a8f 3e5595b b439a8f 3e5595b b439a8f 3e5595b b439a8f 81bf9b4 b439a8f f57d7c6 b439a8f 81bf9b4 b439a8f 81bf9b4 b439a8f f57d7c6 b439a8f 3e5595b b439a8f 3e5595b b439a8f edc20ac b439a8f 3e5595b b439a8f 3e5595b b439a8f 3e5595b b439a8f 3e5595b b439a8f 3e5595b b439a8f 3e5595b f57d7c6 3e5595b b439a8f 3e5595b b439a8f 3e5595b f57d7c6 3e5595b b439a8f 3e5595b b439a8f 3e5595b f57d7c6 3e5595b b439a8f 3e5595b b439a8f 3e5595b dc53b3a 3e5595b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 |
#include "ggml.h"
#include "otherarch.h"
#include "utils.h"
#include <cassert>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <fstream>
#include <map>
#include <string>
#include <vector>
#include <iostream>
#include <algorithm>
#include "model_adapter.h"
#ifdef GGML_USE_CUBLAS
#include "ggml-cuda.h"
#endif
#if defined(GGML_USE_CLBLAST)
#include "ggml-opencl.h"
#endif
// load the model's weights from a file
bool mpt_model_load(const std::string & fname, mpt_model & model, gpt_vocab & vocab, int gpulayers) {
printf("%s: loading model from '%s' - please wait ...\n", __func__, fname.c_str());
auto fin = std::ifstream(fname, std::ios::binary);
if (!fin) {
fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
return false;
}
// verify magic
{
uint32_t magic;
fin.read((char *)&magic, sizeof(magic));
if (magic != 0x67676d6c) {
fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str());
return false;
}
}
// load hparams
{
auto & hparams = model.hparams;
fin.read((char *) &hparams.d_model, sizeof(hparams.d_model));
fin.read((char *) &hparams.max_seq_len, sizeof(hparams.max_seq_len));
fin.read((char *) &hparams.n_heads, sizeof(hparams.n_heads));
fin.read((char *) &hparams.n_layers, sizeof(hparams.n_layers));
fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
fin.read((char *) &hparams.alibi_bias_max, sizeof(hparams.alibi_bias_max));
fin.read((char *) &hparams.clip_qkv, sizeof(hparams.clip_qkv));
fin.read((char *) &hparams.ftype, sizeof(hparams.ftype));
hparams.n_ctx = std::min(hparams.max_seq_len, hparams.n_ctx);
const int32_t qntvr = hparams.ftype / GGML_QNT_VERSION_FACTOR;
printf("%s: d_model = %d\n", __func__, hparams.d_model);
printf("%s: max_seq_len = %d\n", __func__, hparams.max_seq_len);
printf("%s: n_ctx = %d\n", __func__, hparams.n_ctx);
printf("%s: n_heads = %d\n", __func__, hparams.n_heads);
printf("%s: n_layers = %d\n", __func__, hparams.n_layers);
printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab);
printf("%s: alibi_bias_max = %f\n", __func__, hparams.alibi_bias_max);
printf("%s: clip_qkv = %f\n", __func__, hparams.clip_qkv);
printf("%s: ftype = %d\n", __func__, hparams.ftype);
printf("%s: qntvr = %d\n", __func__, qntvr);
hparams.ftype %= GGML_QNT_VERSION_FACTOR;
}
// load vocab
{
const int32_t n_vocab = model.hparams.n_vocab;
std::string word;
std::vector<char> buf(128);
for (int i = 0; i < n_vocab; i++) {
uint32_t len;
fin.read((char *) &len, sizeof(len));
buf.resize(len);
fin.read((char *) buf.data(), len);
word.assign(buf.data(), len);
// Convert token from utf-8
// std::wstring word_multibytes = convert_to_wstring(word);
// if(word_multibytes!=L"")
// {
// word.resize(word_multibytes.size());
// for (int w = 0; w < word_multibytes.size(); w++) {
// word[w] = uint8_t(word_multibytes[w]);
// }
// }
vocab.token_to_id[word] = i;
vocab.id_to_token[i] = word;
}
}
// for the big tensors, we have the option to store the data in 16-bit
// floats or quantized in order to save memory and also to speed up the
// computation
ggml_type wtype = ggml_ftype_to_ggml_type((ggml_ftype)(model.hparams.ftype));
if (wtype == GGML_TYPE_COUNT) {
fprintf(stderr, "%s: invalid model file '%s' (bad ftype value %d)\n", __func__, fname.c_str(),
model.hparams.ftype);
return false;
}
auto & ctx = model.ctx;
size_t ctx_size = 0;
const auto & hparams = model.hparams;
const size_t n_ctx = hparams.n_ctx;
{
const size_t n_embd = hparams.d_model;
const size_t n_layer = hparams.n_layers;
const size_t n_vocab = hparams.n_vocab;
ctx_size += n_embd * n_vocab * ggml_type_sizef(wtype); // wte_weight
ctx_size += n_embd * ggml_type_sizef(GGML_TYPE_F32); // norm_f_weight
ctx_size += n_layer * (n_embd * ggml_type_sizef(GGML_TYPE_F32)); // ln_1_weight
ctx_size += n_layer * (3 * n_embd * n_embd * ggml_type_sizef(wtype)); // attn_Wqkv_weight
ctx_size += n_layer * (n_embd * n_embd * ggml_type_sizef(wtype)); // attn_out_proj_weight
ctx_size += n_layer * (n_embd * ggml_type_sizef(GGML_TYPE_F32)); // ln_2_weight
ctx_size += n_layer * (4 * n_embd * n_embd * ggml_type_sizef(wtype)); // mlp_mlp_up_weight
ctx_size += n_layer * (n_embd * n_embd * 4 * ggml_type_sizef(wtype)); // mlp_mlp_down_weight
ctx_size += n_ctx * n_layer * n_embd * ggml_type_sizef(GGML_TYPE_F16); // memory_k
ctx_size += n_ctx * n_layer * n_embd * ggml_type_sizef(GGML_TYPE_F16); // memory_v
ctx_size += (6 + 6 * n_layer) * 512; // object overhead
printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size / (1024.0 * 1024.0));
}
// create the ggml context
{
struct ggml_init_params params;
params.mem_size = ctx_size;
params.mem_buffer = NULL;
params.no_alloc = false;
model.ctx = ggml_init(params);
if (!model.ctx) {
fprintf(stderr, "%s: ggml_init() failed\n", __func__);
return false;
}
}
// prepare memory for the weights
{
const auto & hparams = model.hparams;
const size_t n_embd = hparams.d_model;
const size_t n_layer = hparams.n_layers;
const size_t n_vocab = hparams.n_vocab;
model.layers.resize(n_layer);
model.wte_weight = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab);
model.norm_f_weight = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
// map by name
model.tensors["transformer.wte.weight"] = model.wte_weight;
model.tensors["transformer.norm_f.weight"] = model.norm_f_weight;
for (int i = 0; i < (int) n_layer; ++i) {
auto & layer = model.layers[i];
layer.norm_1_weight = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.c_attn_wqkv_weight = ggml_new_tensor_2d(ctx, wtype, n_embd, 3 * n_embd);
layer.c_attn_out_proj_weight = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
layer.norm_2_weight = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.ffn_up_proj = ggml_new_tensor_2d(ctx, wtype, n_embd, 4 * n_embd);
layer.ffn_down_proj = ggml_new_tensor_2d(ctx, wtype, 4 * n_embd, n_embd);
// map by name
model.tensors["transformer.blocks." + std::to_string(i) + ".norm_1.weight"] = layer.norm_1_weight;
model.tensors["transformer.blocks." + std::to_string(i) + ".attn.Wqkv.weight"] = layer.c_attn_wqkv_weight;
model.tensors["transformer.blocks." + std::to_string(i) + ".attn.out_proj.weight"] = layer.c_attn_out_proj_weight;
model.tensors["transformer.blocks." + std::to_string(i) + ".norm_2.weight"] = layer.norm_2_weight;
model.tensors["transformer.blocks." + std::to_string(i) + ".ffn.up_proj.weight"] = layer.ffn_up_proj;
model.tensors["transformer.blocks." + std::to_string(i) + ".ffn.down_proj.weight"] = layer.ffn_down_proj;
}
}
// key + value memory
{
const auto & hparams = model.hparams;
const size_t n_embd = hparams.d_model;
const size_t n_layer = hparams.n_layers;
const int64_t n_mem = n_layer * n_ctx;
const int64_t n_elements = n_embd * n_mem;
model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
const size_t memory_size = ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v);
printf("%s: memory_size = %8.2f MB, n_mem = %" PRId64 "\n", __func__, memory_size / 1024.0 / 1024.0, n_mem);
}
// load weights
{
int n_tensors = 0;
size_t total_size = 0;
printf("%s: ", __func__);
while (true) {
int32_t n_dims;
int32_t length;
int32_t ttype;
fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
fin.read(reinterpret_cast<char *>(&length), sizeof(length));
fin.read(reinterpret_cast<char *>(&ttype), sizeof(ttype));
if (fin.eof()) {
break;
}
int32_t nelements = 1;
int32_t ne[2] = {1, 1};
for (int i = 0; i < n_dims; ++i) {
fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
nelements *= ne[i];
}
std::string name(length, 0);
fin.read(&name[0], length);
if (model.tensors.find(name.data()) == model.tensors.end()) {
fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data());
return false;
}
auto tensor = model.tensors[name.data()];
if (ggml_nelements(tensor) != nelements) {
fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
return false;
}
if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) {
fprintf(stderr,
"%s: tensor '%s' has wrong shape in model file: got [%5d, "
"%5d], expected [%5d, %5d]\n",
__func__, name.data(), (int)tensor->ne[0], (int)tensor->ne[1], ne[0], ne[1]);
return false;
}
// for debugging
if (0) {
printf("%24s - [%5d, %5d], type = %6s, %6.2f MB, %9zu bytes\n", name.data(), ne[0], ne[1],
ggml_type_name(ggml_type(ttype)), ggml_nbytes(tensor) / 1024.0 / 1024.0, ggml_nbytes(tensor));
}
const size_t bpe = ggml_type_size(ggml_type(ttype));
if ((nelements * bpe) / ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) {
fprintf(stderr,
"%s: tensor '%s' has wrong size in model file: got %zu, "
"expected %zu\n",
__func__, name.data(), ggml_nbytes(tensor), nelements * bpe);
return false;
}
fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
total_size += ggml_nbytes(tensor);
if (++n_tensors % 8 == 0) {
printf(".");
fflush(stdout);
}
}
printf(" done\n");
printf("%s: model size = %8.2f MB / num tensors = %d\n", __func__, total_size / 1024.0 / 1024.0, n_tensors);
}
fin.close();
//gpu offload
#if defined(GGML_USE_CLBLAST) || defined(GGML_USE_CUBLAS)
if(gpulayers>0)
{
const auto & hparams = model.hparams;
size_t vram_total = 0;
const int n_gpu = std::min(gpulayers, int(hparams.n_layers));
#if defined(GGML_USE_CLBLAST)
fprintf(stderr, "%s: [opencl] offloading %d layers to GPU\n", __func__, n_gpu);
#else
fprintf(stderr, "%s: [CUDA] offloading %d layers to GPU\n", __func__, n_gpu);
#endif
for (int i = 0; i < n_gpu; ++i) {
const auto & layer = model.layers[i];
layer.ffn_up_proj->backend = GGML_BACKEND_GPU;
layer.ffn_down_proj->backend = GGML_BACKEND_GPU;
layer.c_attn_wqkv_weight->backend = GGML_BACKEND_GPU;
layer.c_attn_out_proj_weight->backend = GGML_BACKEND_GPU;
#if defined(GGML_USE_CLBLAST)
ggml_cl_transform_tensor(layer.ffn_up_proj->data,layer.ffn_up_proj); vram_total += ggml_nbytes(layer.ffn_up_proj);
ggml_cl_transform_tensor(layer.ffn_down_proj->data,layer.ffn_down_proj); vram_total += ggml_nbytes(layer.ffn_down_proj);
ggml_cl_transform_tensor(layer.c_attn_wqkv_weight->data,layer.c_attn_wqkv_weight); vram_total += ggml_nbytes(layer.c_attn_wqkv_weight);
ggml_cl_transform_tensor(layer.c_attn_out_proj_weight->data,layer.c_attn_out_proj_weight); vram_total += ggml_nbytes(layer.c_attn_out_proj_weight);
#else
ggml_cuda_transform_tensor(layer.ffn_up_proj->data,layer.ffn_up_proj); vram_total += ggml_nbytes(layer.ffn_up_proj);
ggml_cuda_transform_tensor(layer.ffn_down_proj->data,layer.ffn_down_proj); vram_total += ggml_nbytes(layer.ffn_down_proj);
ggml_cuda_transform_tensor(layer.c_attn_wqkv_weight->data,layer.c_attn_wqkv_weight); vram_total += ggml_nbytes(layer.c_attn_wqkv_weight);
ggml_cuda_transform_tensor(layer.c_attn_out_proj_weight->data,layer.c_attn_out_proj_weight); vram_total += ggml_nbytes(layer.c_attn_out_proj_weight);
#endif
}
#if defined(GGML_USE_CLBLAST)
fprintf(stderr, "%s: [opencl] total VRAM used: %zu MB\n", __func__, vram_total / 1024 / 1024);
#else
fprintf(stderr, "%s: [CUDA] total VRAM used: %zu MB\n", __func__, vram_total / 1024 / 1024);
#endif
}
#endif
return true;
}
// evaluate the transformer
//
// - model: the model
// - n_threads: number of threads to use
// - n_past: the context size so far
// - embd_inp: the embeddings of the tokens in the context
// - embd_w: the predicted logits for the next token
//
bool mpt_eval(const mpt_model & model, const int n_threads, const int n_past,
const std::vector<gpt_vocab::id> & embd_inp, std::vector<float> & embd_w,
bool logits_all, size_t & mem_per_token, bool use_scratch) {
const int N = embd_inp.size();
const auto & hparams = model.hparams;
const int n_embd = hparams.d_model;
const int n_layer = hparams.n_layers;
const int n_head = hparams.n_heads;
const int n_vocab = hparams.n_vocab;
const int n_ctx = hparams.n_ctx;
static size_t buf_size = 256u * 1024 * 1024;
static void * buf = malloc(buf_size);
// use 2 scratch buffers
// TODO: very hacky solution - reimplement in a more elegant way
//MPT 30B needs more scratch memory
static size_t scr0_size = (n_embd>=7168?2048u:1024u)*1024*1024*(hparams.n_ctx>8192?2:1);
static size_t scr1_size = (n_embd>=7168?2048u:1024u)*1024*1024;
static void * scr0 = malloc(scr0_size);
static void * scr1 = malloc(scr1_size);
if (mem_per_token > 0 && (mem_per_token*N*2 + 64u*1024*1024) > buf_size) {
const size_t buf_size_new = 320u*1024*1024 + 1.2*(mem_per_token*N); // add 10% to account for ggml object overhead
// printf("\n%s: reallocating buffer from %zu to %zu bytes\n", __func__,
// buf_size, buf_size_new);
// reallocate
if (buf_size_new > buf_size)
{
buf_size = buf_size_new;
buf = realloc(buf, buf_size);
if (buf == nullptr) {
fprintf(stderr, "%s: failed to allocate %zu bytes. Try reducing batch size.\n", __func__, buf_size);
return false;
}
}
}
struct ggml_init_params params;
params.mem_size = buf_size;
params.mem_buffer = buf;
params.no_alloc = false;
struct ggml_context * ctx0 = ggml_init(params);
struct ggml_cgraph gf = {};
struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
memcpy(embd->data, embd_inp.data(), N * ggml_element_size(embd));
struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.wte_weight, embd);
for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * cur;
if(use_scratch){
ggml_set_scratch(ctx0, { 0, scr0_size, scr0, });
}
// a = self.ln_1(x)
{
cur = ggml_norm(ctx0, inpL, default_norm_eps);
cur = ggml_mul(ctx0, ggml_repeat(ctx0, model.layers[il].norm_1_weight, cur), cur);
}
// self-attention
// b, _, past_key_value = self.attn(a, past_key_value=past_key_value,
// attn_bias=attn_bias, attention_mask=attention_mask,
// is_causal=is_causal)
{
// compute QKV
cur = ggml_mul_mat(ctx0, model.layers[il].c_attn_wqkv_weight, cur);
if (model.hparams.clip_qkv > 0.0f) {
cur = ggml_clamp(ctx0, cur, -model.hparams.clip_qkv, model.hparams.clip_qkv);
}
struct ggml_tensor * Qcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 0 * sizeof(float) * n_embd);
struct ggml_tensor * Kcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 1 * sizeof(float) * n_embd);
struct ggml_tensor * Vcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 2 * sizeof(float) * n_embd);
// store key and value to memory
{
struct ggml_tensor * k =
ggml_view_1d(ctx0, model.memory_k, N * n_embd,
(ggml_element_size(model.memory_k) * n_embd) * (il * n_ctx + n_past));
struct ggml_tensor * v =
ggml_view_1d(ctx0, model.memory_v, N * n_embd,
(ggml_element_size(model.memory_v) * n_embd) * (il * n_ctx + n_past));
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
}
// Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0,
// 2, 1, 3) [64, N, 12]
struct ggml_tensor * Q = ggml_permute(
ctx0, ggml_cpy(ctx0, Qcur, ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd / n_head, n_head, N)), 0, 2,
1, 3);
// K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1,
// 3) [64, n_past + N, 12]
struct ggml_tensor * K =
ggml_permute(ctx0,
ggml_reshape_3d(ctx0,
ggml_view_1d(ctx0, model.memory_k, (n_past + N) * n_embd,
il * n_ctx * ggml_element_size(model.memory_k) * n_embd),
n_embd / n_head, n_head, n_past + N),
0, 2, 1, 3);
// K * Q
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
// KQ_scaled = KQ / sqrt(n_embd/n_head)
struct ggml_tensor * KQ_scaled =
ggml_scale(ctx0, KQ, ggml_new_f32(ctx0, 1.0f / sqrt(float(n_embd) / n_head)));
struct ggml_tensor * KQ_scaled_alibi =
ggml_alibi(ctx0, KQ_scaled, n_past, n_head, model.hparams.alibi_bias_max);
// KQ_masked = mask_past(KQ_scaled)
struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled_alibi, n_past);
// KQ = soft_max(KQ_masked)
struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
// V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1,
// 2, 0, 3).contiguous() [n_past + N, 64, 12]
struct ggml_tensor * V_trans = ggml_cpy(
ctx0,
ggml_permute(ctx0,
ggml_reshape_3d(ctx0,
ggml_view_1d(ctx0, model.memory_v, (n_past + N) * n_embd,
il * n_ctx * ggml_element_size(model.memory_v) * n_embd),
n_embd / n_head, n_head, n_past + N),
1, 2, 0, 3),
ggml_new_tensor_3d(ctx0, model.memory_v->type, n_past + N, n_embd / n_head, n_head));
// KQV = transpose(V) * KQ_soft_max
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_trans, KQ_soft_max);
// KQV_merged = KQV.permute(0, 2, 1, 3)
struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
// cur = KQV_merged.contiguous().view(n_embd, N)
cur = ggml_cpy(ctx0, KQV_merged, ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
// projection
{ cur = ggml_mul_mat(ctx0, model.layers[il].c_attn_out_proj_weight, cur); }
}
inpL = ggml_add(ctx0, inpL, cur);
if(use_scratch){
ggml_set_scratch(ctx0, { 0, scr1_size, scr1, });
}
// m = self.ln_2(x)
{
cur = ggml_norm(ctx0, inpL, default_norm_eps);
cur = ggml_mul(ctx0, ggml_repeat(ctx0, model.layers[il].norm_2_weight, cur), cur);
}
// n = self.mlp(m)
{
cur = ggml_mul_mat(ctx0, model.layers[il].ffn_up_proj, cur);
// GELU activation
cur = ggml_gelu(ctx0, cur);
// projection
// cur = proj_w*cur + proj_b
cur = ggml_mul_mat(ctx0, model.layers[il].ffn_down_proj, cur);
}
// x = x + n
inpL = ggml_add(ctx0, inpL, cur);
}
if(use_scratch){
ggml_set_scratch(ctx0, { 0, scr0_size, scr0, });
}
// norm
{
inpL = ggml_norm(ctx0, inpL, default_norm_eps);
// inpL = ln_f_g*inpL
inpL = ggml_mul(ctx0, ggml_repeat(ctx0, model.norm_f_weight, inpL), inpL);
}
if(use_scratch){
ggml_set_scratch(ctx0, { 0, 0, nullptr, });
}
// output embedding weight tied to input embedding
inpL = ggml_mul_mat(ctx0, model.wte_weight, inpL);
// logits -> probs
// inpL = ggml_soft_max(ctx0, inpL);
// run the computation
ggml_build_forward_expand(&gf, inpL);
kcpp_graph_compute_helper(&gf, n_threads);
// std::cout << "Qcur" << std::endl;
// print_tensor(Qcur);
// if (n_past%100 == 0) {
// ggml_graph_print(&gf);
// ggml_graph_dump_dot(&gf, NULL, "mpt-model.dot");
// }
if (logits_all) {
// return result for all tokens
embd_w.resize(n_vocab *N);
memcpy(embd_w.data(), (float *)ggml_get_data(inpL) , sizeof(float) * n_vocab * N);
} else {
// return result for just the last token
embd_w.resize(n_vocab);
memcpy(embd_w.data(), (float *)ggml_get_data(inpL) + (n_vocab * (N - 1)), sizeof(float) * n_vocab);
}
if (mem_per_token == 0) {
mem_per_token = ggml_used_mem(ctx0) / N;
}
// printf("used_mem = %zu\n", ggml_used_mem(ctx0));
ggml_free(ctx0);
return true;
}
|