File size: 10,927 Bytes
f57d7c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46c2bfc
f57d7c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46c2bfc
 
 
f57d7c6
 
 
 
 
46c2bfc
 
f57d7c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57c742e
 
f57d7c6
 
 
 
 
 
 
 
 
57c742e
f57d7c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57c742e
46c2bfc
f57d7c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57c742e
 
 
 
 
 
 
f57d7c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57c742e
46c2bfc
f57d7c6
 
 
 
 
 
 
 
57c742e
46c2bfc
f57d7c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
#include "build-info.h"

#include "common.h"
#include "llama.h"
#include "grammar-parser.h"

#include <cmath>
#include <cstdio>
#include <string>
#include <vector>

int main(int argc, char ** argv) {
    gpt_params params;

    if (gpt_params_parse(argc, argv, params) == false) {
        return 1;
    }

    if (params.model_draft.empty()) {
        fprintf(stderr, "%s: error: --model-draft is required\n", __func__);
        return 1;
    }

#ifndef LOG_DISABLE_LOGS
    log_set_target(log_filename_generator("speculative", "log"));
    LOG_TEE("Log start\n");
    log_dump_cmdline(argc, argv);
#endif // LOG_DISABLE_LOGS

    // init llama.cpp
    llama_backend_init(params.numa);

    llama_model * model_tgt = NULL;
    llama_model * model_dft = NULL;

    llama_context * ctx_tgt = NULL;
    llama_context * ctx_dft = NULL;

    // load the target model
    params.logits_all = true;
    std::tie(model_tgt, ctx_tgt) = llama_init_from_gpt_params(params);

    // load the draft model
    params.model = params.model_draft;
    params.n_gpu_layers = params.n_gpu_layers_draft;
    std::tie(model_dft, ctx_dft) = llama_init_from_gpt_params(params);

    // tokenize the prompt
    std::vector<llama_token> inp;
    inp = ::llama_tokenize(ctx_tgt, params.prompt, true);

    const int max_context_size     = llama_n_ctx(ctx_tgt);
    const int max_tokens_list_size = max_context_size - 4;

    if ((int) inp.size() > max_tokens_list_size) {
        fprintf(stderr, "%s: error: prompt too long (%d tokens, max %d)\n", __func__, (int) inp.size(), max_tokens_list_size);
        return 1;
    }

    fprintf(stderr, "\n\n");

    for (auto id : inp) {
        fprintf(stderr, "%s", llama_token_to_piece(ctx_tgt, id).c_str());
    }

    fflush(stderr);

    const int n_input = inp.size();

    const auto t_enc_start = ggml_time_us();

    // eval the prompt with both models
    llama_decode(ctx_tgt, llama_batch_get_one( inp.data(), n_input - 1, 0,           0));
    llama_decode(ctx_tgt, llama_batch_get_one(&inp.back(),           1, n_input - 1, 0));
    llama_decode(ctx_dft, llama_batch_get_one( inp.data(), n_input,     0,           0));

    const auto t_enc_end = ggml_time_us();

    // the 2 models should have the same vocab
    const int n_ctx   = llama_n_ctx(ctx_tgt);
    const int n_vocab = llama_n_vocab(model_tgt);
    //GGML_ASSERT(n_vocab == llama_n_vocab(model_dft));

    // how many tokens to draft each time
    int n_draft = params.n_draft;

    int n_predict = 0;
    int n_drafted = 0;
    int n_accept  = 0;

    int n_past_tgt = inp.size();
    int n_past_dft = inp.size();

    std::vector<llama_token> drafted;

    std::vector<llama_token> last_tokens(n_ctx);
    std::fill(last_tokens.begin(), last_tokens.end(), 0);

    for (auto & id : inp) {
        last_tokens.erase(last_tokens.begin());
        last_tokens.push_back(id);
    }

    std::vector<llama_token_data> candidates;
    candidates.reserve(n_vocab);

    // used to determine end of generation
    bool has_eos = false;

    // grammar stuff
    struct llama_grammar * grammar_dft = NULL;
    struct llama_grammar * grammar_tgt = NULL;

    grammar_parser::parse_state parsed_grammar;

    // if requested - load the grammar, error checking is omitted for brevity
    if (!params.grammar.empty()) {
        parsed_grammar = grammar_parser::parse(params.grammar.c_str());
        // will be empty (default) if there are parse errors
        if (parsed_grammar.rules.empty()) {
            return 1;
        }

        std::vector<const llama_grammar_element *> grammar_rules(parsed_grammar.c_rules());
        grammar_tgt = llama_grammar_init(grammar_rules.data(), grammar_rules.size(), parsed_grammar.symbol_ids.at("root"));
    }

    llama_sampling_context ctx_sampling = llama_sampling_context_init(params, grammar_tgt);

    const auto t_dec_start = ggml_time_us();

    while (true) {
        LOG("drafted: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_dft, drafted));

        int i_dft = 0;

        while (true) {
            // sample from the target model
            llama_token id = llama_sampling_sample(ctx_tgt, NULL, ctx_sampling, last_tokens, candidates, i_dft);

            // remember which tokens were sampled - used for repetition penalties during sampling
            last_tokens.erase(last_tokens.begin());
            last_tokens.push_back(id);

            //LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_tgt, last_tokens));

            const std::string token_str = llama_token_to_piece(ctx_tgt, id);
            printf("%s", token_str.c_str());
            fflush(stdout);

            if (id == llama_token_eos(ctx_tgt)) {
                has_eos = true;
            }

            ++n_predict;

            // check if the draft matches the target
            if (i_dft < (int) drafted.size() && id == drafted[i_dft]) {
                LOG("the sampled target token matches the %dth drafted token (%d, '%s') - accepted\n", i_dft, id, token_str.c_str());
                ++n_accept;
                ++n_past_tgt;
                ++n_past_dft;
                ++i_dft;

                continue;
            }

            // the drafted token was rejected or we are out of drafted tokens

            if (i_dft < (int) drafted.size()) {
                LOG("the %dth drafted token (%d, '%s') does not match the sampled target token (%d, '%s') - rejected\n",
                        i_dft, drafted[i_dft], llama_token_to_piece(ctx_dft, drafted[i_dft]).c_str(), id, token_str.c_str());
            } else {
                LOG("out of drafted tokens\n");
            }

            llama_kv_cache_seq_rm(ctx_dft, 0, n_past_dft, -1);
            llama_decode(ctx_dft, llama_batch_get_one(&id, 1, n_past_dft, 0));
            ++n_past_dft;

            // heuristic for n_draft
            {
                const int  n_draft_cur  = (int) drafted.size();
                const bool all_accepted = i_dft == n_draft_cur;

                LOG("n_draft      = %d\n", n_draft);
                LOG("n_draft_cur  = %d\n", n_draft_cur);
                LOG("i_dft        = %d\n", i_dft);
                LOG("all_accepted = %d\n", all_accepted);

                if (all_accepted && n_draft == n_draft_cur) {
                    LOG(" - max drafted tokens accepted - n_draft += 8\n");
                    n_draft = std::min(30, n_draft + 8);
                } else if (all_accepted) {
                    LOG(" - partially drafted tokens accepted - no change\n");
                } else {
                    LOG(" - drafted token rejected - n_draft -= 1\n");
                    n_draft = std::max(2, n_draft - 1);
                }
            }

            drafted.clear();
            drafted.push_back(id);

            break;
        }

        if (n_predict > params.n_predict || has_eos) {
            break;
        }

        if (grammar_tgt) {
            if (grammar_dft) {
                llama_grammar_free(grammar_dft);
            }
            // Note: Hardcoded to sequence id 0, if this ever supports parallel generation
            //       that will need to change.
            auto it = ctx_sampling.sequence_contexts.find(0);
            GGML_ASSERT(it != ctx_sampling.sequence_contexts.end());
            // This is necessary because each sequence id in sequence_contexts
            // uses a copy of the original grammar.
            grammar_dft = llama_grammar_copy(it->second.grammar);

            LOG("copied target grammar to draft grammar\n");
        }

        // sample n_draft tokens from the draft model using greedy decoding
        int n_past_cur = n_past_dft;
        for (int i = 0; i < n_draft; ++i) {
            float * logits = llama_get_logits(ctx_dft);

            candidates.clear();
            for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
                candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
            }

            llama_token_data_array cur_p = { candidates.data(), candidates.size(), false };

            if (grammar_dft != NULL) {
                llama_sample_grammar(ctx_dft, &cur_p, grammar_dft);
            }

            // computes softmax and sorts the candidates
            llama_sample_softmax(ctx_dft, &cur_p);

            for (int i = 0; i < 3; ++i) {
                LOG(" - draft candidate %3d: %6d (%8.3f) '%s'\n", i, cur_p.data[i].id, cur_p.data[i].p, llama_token_to_piece(ctx_dft, cur_p.data[i].id).c_str());
            }

            // TODO: better logic?
            if (cur_p.data[0].p < 2*cur_p.data[1].p) {
                LOG("stopping drafting, probability too low: %.3f < 2*%.3f\n", cur_p.data[0].p, cur_p.data[1].p);
                break;
            }

            // drafted token
            const llama_token id = cur_p.data[0].id;

            drafted.push_back(id);
            ++n_drafted;

            // no need to evaluate the last drafted token, since we won't use the result
            if (i == n_draft - 1) {
                break;
            }

            // evaluate the drafted token on the draft model
            llama_kv_cache_seq_rm(ctx_dft, 0, n_past_cur, -1);
            llama_decode(ctx_dft, llama_batch_get_one(&drafted.back(), 1, n_past_cur, 0));
            ++n_past_cur;

            if (grammar_dft != NULL) {
                llama_grammar_accept_token(ctx_dft, grammar_dft, id);
            }
        }

        // evaluate the target model on the drafted tokens
        llama_kv_cache_seq_rm(ctx_tgt, 0, n_past_tgt, -1);
        llama_decode(ctx_tgt, llama_batch_get_one(drafted.data(), drafted.size(), n_past_tgt, 0));
        ++n_past_tgt;

        // the first token is always proposed by the traget model before the speculation loop
        drafted.erase(drafted.begin());
    }

    auto t_dec_end = ggml_time_us();

    LOG_TEE("\n\n");

    LOG_TEE("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input,   (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f));
    LOG_TEE("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f));

    // TODO: make sure these numbers are computed correctly
    LOG_TEE("\n");
    LOG_TEE("n_draft   = %d\n", n_draft);
    LOG_TEE("n_predict = %d\n", n_predict);
    LOG_TEE("n_drafted = %d\n", n_drafted);
    LOG_TEE("n_accept  = %d\n", n_accept);
    LOG_TEE("accept    = %.3f%%\n", 100.0f * n_accept / n_drafted);

    LOG_TEE("\ndraft:\n");
    llama_print_timings(ctx_dft);

    LOG_TEE("\ntarget:\n");
    llama_print_timings(ctx_tgt);

    llama_free(ctx_tgt);
    llama_free_model(model_tgt);

    llama_free(ctx_dft);
    llama_free_model(model_dft);

    if (grammar_dft != NULL) {
        llama_grammar_free(grammar_dft);
        llama_grammar_free(grammar_tgt);
    }
    llama_backend_free();

    fprintf(stderr, "\n\n");

    return 0;
}