Spaces:
Sleeping
Sleeping
File size: 13,251 Bytes
4e6ea87 3667c7a 72b491a 44800eb 56bd1e9 44800eb 3667c7a 9fc1785 e12b285 56bd1e9 9fc1785 e12b285 e4558ca 56bd1e9 e4558ca 9fc1785 e12b285 e4558ca 56bd1e9 e4558ca 9fc1785 e12b285 e4558ca 56bd1e9 e4558ca 9fc1785 3667c7a 56bd1e9 3667c7a 72b491a 9fc1785 3667c7a e4558ca d6cd6c2 e4558ca 56bd1e9 e4558ca d6cd6c2 72b491a 56bd1e9 72b491a 56bd1e9 d6cd6c2 72b491a 56bd1e9 72b491a 56bd1e9 72b491a 56bd1e9 72b491a 56bd1e9 e4558ca 56bd1e9 e4558ca 44800eb 56bd1e9 d6cd6c2 56bd1e9 d6cd6c2 3667c7a e12b285 e4558ca 56bd1e9 e4558ca 9fc1785 e12b285 4e6ea87 e12b285 e4558ca 56bd1e9 e4558ca 9fc1785 e12b285 9fc1785 8d3b67a e4558ca 56bd1e9 e4558ca 9fc1785 eee97a9 3667c7a e12b285 e4558ca 56bd1e9 e4558ca 82598a2 63d96fd 3667c7a e12b285 3667c7a 78654a1 e12b285 e4558ca 56bd1e9 e4558ca 44800eb 9fc1785 e12b285 1f19f64 44800eb e4558ca e12b285 e4558ca 56bd1e9 e4558ca d6cd6c2 e4558ca e12b285 eee97a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
import os
from openai import OpenAI
import anthropic
from utils.errors import APIError
from typing import List, Dict, Generator, Optional, Tuple, Any
import logging
class PromptManager:
def __init__(self, prompts: Dict[str, str]):
"""
Initialize the PromptManager.
Args:
prompts (Dict[str, str]): A dictionary of prompt keys and their corresponding text.
"""
self.prompts: Dict[str, str] = prompts
self.limit: Optional[str] = os.getenv("DEMO_WORD_LIMIT")
def add_limit(self, prompt: str) -> str:
"""
Add word limit to the prompt if specified in the environment variables.
Args:
prompt (str): The original prompt.
Returns:
str: The prompt with added word limit if applicable.
"""
if self.limit:
prompt += f" Keep your responses very short and simple, no more than {self.limit} words."
return prompt
def get_system_prompt(self, key: str) -> str:
"""
Retrieve and limit a system prompt by its key.
Args:
key (str): The key for the desired prompt.
Returns:
str: The retrieved prompt with added word limit if applicable.
Raises:
KeyError: If the key is not found in the prompts dictionary.
"""
prompt = self.prompts[key]
return self.add_limit(prompt)
def get_problem_requirements_prompt(
self, type: str, difficulty: Optional[str] = None, topic: Optional[str] = None, requirements: Optional[str] = None
) -> str:
"""
Create a problem requirements prompt with optional parameters.
Args:
type (str): The type of problem.
difficulty (Optional[str]): The difficulty level of the problem.
topic (Optional[str]): The topic of the problem.
requirements (Optional[str]): Additional requirements for the problem.
Returns:
str: The constructed problem requirements prompt.
"""
prompt = f"Create a {type} problem. Difficulty: {difficulty}. Topic: {topic}. Additional requirements: {requirements}."
return self.add_limit(prompt)
class LLMManager:
def __init__(self, config: Any, prompts: Dict[str, str]):
"""
Initialize the LLMManager.
Args:
config (Any): Configuration object containing LLM settings.
prompts (Dict[str, str]): A dictionary of prompts for the PromptManager.
"""
self.config = config
self.llm_type = config.llm.type
if self.llm_type == "ANTHROPIC_API":
self.client = anthropic.Anthropic(api_key=config.llm.key)
else:
# all other API types suppose to support OpenAI format
self.client = OpenAI(base_url=config.llm.url, api_key=config.llm.key)
self.prompt_manager = PromptManager(prompts)
self.status = self.test_llm(stream=False)
self.streaming = self.test_llm(stream=True) if self.status else False
def get_text(self, messages: List[Dict[str, str]], stream: Optional[bool] = None) -> Generator[str, None, None]:
"""
Generate text from the LLM, optionally streaming the response.
Args:
messages (List[Dict[str, str]]): List of message dictionaries.
stream (Optional[bool]): Whether to stream the response. Defaults to self.streaming if not provided.
Yields:
str: Generated text chunks.
Raises:
APIError: If an unexpected error occurs during text generation.
"""
if stream is None:
stream = self.streaming
try:
if self.llm_type == "OPENAI_API":
yield from self._get_text_openai(messages, stream)
elif self.llm_type == "ANTHROPIC_API":
yield from self._get_text_anthropic(messages, stream)
except Exception as e:
raise APIError(f"LLM Get Text Error: Unexpected error: {e}")
def _get_text_openai(self, messages: List[Dict[str, str]], stream: bool) -> Generator[str, None, None]:
"""
Generate text using OpenAI API.
Args:
messages (List[Dict[str, str]]): List of message dictionaries.
stream (bool): Whether to stream the response.
Yields:
str: Generated text chunks.
"""
if not stream:
response = self.client.chat.completions.create(model=self.config.llm.name, messages=messages, temperature=1, max_tokens=2000)
yield response.choices[0].message.content.strip()
else:
response = self.client.chat.completions.create(
model=self.config.llm.name, messages=messages, temperature=1, stream=True, max_tokens=2000
)
for chunk in response:
if chunk.choices[0].delta.content:
yield chunk.choices[0].delta.content
def _get_text_anthropic(self, messages: List[Dict[str, str]], stream: bool) -> Generator[str, None, None]:
"""
Generate text using Anthropic API.
Args:
messages (List[Dict[str, str]]): List of message dictionaries.
stream (bool): Whether to stream the response.
Yields:
str: Generated text chunks.
"""
system_message, consolidated_messages = self._prepare_anthropic_messages(messages)
if not stream:
response = self.client.messages.create(
model=self.config.llm.name, max_tokens=2000, temperature=1, system=system_message, messages=consolidated_messages
)
yield response.content[0].text
else:
with self.client.messages.stream(
model=self.config.llm.name, max_tokens=2000, temperature=1, system=system_message, messages=consolidated_messages
) as stream:
yield from stream.text_stream
def _prepare_anthropic_messages(self, messages: List[Dict[str, str]]) -> Tuple[Optional[str], List[Dict[str, str]]]:
"""
Prepare messages for Anthropic API format.
Args:
messages (List[Dict[str, str]]): Original messages in OpenAI format.
Returns:
Tuple[Optional[str], List[Dict[str, str]]]: Tuple containing system message and consolidated messages.
"""
system_message = None
consolidated_messages = []
for message in messages:
if message["role"] == "system":
if system_message is None:
system_message = message["content"]
else:
system_message += "\n" + message["content"]
else:
if consolidated_messages and consolidated_messages[-1]["role"] == message["role"]:
consolidated_messages[-1]["content"] += "\n" + message["content"]
else:
consolidated_messages.append(message.copy())
return system_message, consolidated_messages
def test_llm(self, stream: bool = False) -> bool:
"""
Test the LLM connection with or without streaming.
Args:
stream (bool): Whether to test streaming functionality.
Returns:
bool: True if the test is successful, False otherwise.
"""
try:
test_messages = [
{"role": "system", "content": "You just help me test the connection."},
{"role": "user", "content": "Hi!"},
{"role": "user", "content": "Ping!"},
]
list(self.get_text(test_messages, stream=stream))
return True
except APIError as e:
logging.error(f"LLM test failed: {e}")
return False
except Exception as e:
logging.error(f"Unexpected error during LLM test: {e}")
return False
def init_bot(self, problem: str, interview_type: str = "coding") -> List[Dict[str, str]]:
"""
Initialize the bot with a system prompt and problem description.
Args:
problem (str): The problem description.
interview_type (str): The type of interview. Defaults to "coding".
Returns:
List[Dict[str, str]]: Initial messages for the bot.
"""
system_prompt = self.prompt_manager.get_system_prompt(f"{interview_type}_interviewer_prompt")
return [{"role": "system", "content": f"{system_prompt}\nThe candidate is solving the following problem:\n {problem}"}]
def get_problem_prepare_messages(self, requirements: str, difficulty: str, topic: str, interview_type: str) -> List[Dict[str, str]]:
"""
Prepare messages for generating a problem based on given requirements.
Args:
requirements (str): Specific requirements for the problem.
difficulty (str): Difficulty level of the problem.
topic (str): Topic of the problem.
interview_type (str): Type of interview.
Returns:
List[Dict[str, str]]: Prepared messages for problem generation.
"""
system_prompt = self.prompt_manager.get_system_prompt(f"{interview_type}_problem_generation_prompt")
full_prompt = self.prompt_manager.get_problem_requirements_prompt(interview_type, difficulty, topic, requirements)
return [
{"role": "system", "content": system_prompt},
{"role": "user", "content": full_prompt},
]
def get_problem(self, requirements: str, difficulty: str, topic: str, interview_type: str) -> Generator[str, None, None]:
"""
Get a problem from the LLM based on the given requirements, difficulty, and topic.
Args:
requirements (str): Specific requirements for the problem.
difficulty (str): Difficulty level of the problem.
topic (str): Topic of the problem.
interview_type (str): Type of interview.
Yields:
str: Incrementally generated problem statement.
"""
messages = self.get_problem_prepare_messages(requirements, difficulty, topic, interview_type)
problem = ""
for text in self.get_text(messages):
problem += text
yield problem
def update_chat_history(
self, code: str, previous_code: str, chat_history: List[Dict[str, str]], chat_display: List[List[Optional[str]]]
) -> List[Dict[str, str]]:
"""
Update chat history with the latest user message and code.
Args:
code (str): Current code.
previous_code (str): Previous code.
chat_history (List[Dict[str, str]]): Current chat history.
chat_display (List[List[Optional[str]]]): Current chat display.
Returns:
List[Dict[str, str]]: Updated chat history.
"""
message = chat_display[-1][0]
if not message:
message = ""
if code != previous_code:
message += "\nMY NOTES AND CODE:\n" + code
chat_history.append({"role": "user", "content": message})
return chat_history
def end_interview_prepare_messages(
self, problem_description: str, chat_history: List[Dict[str, str]], interview_type: str
) -> List[Dict[str, str]]:
"""
Prepare messages to end the interview and generate feedback.
Args:
problem_description (str): The original problem description.
chat_history (List[Dict[str, str]]): The chat history.
interview_type (str): The type of interview.
Returns:
List[Dict[str, str]]: Prepared messages for generating feedback.
"""
transcript = [f"{message['role'].capitalize()}: {message['content']}" for message in chat_history[1:]]
system_prompt = self.prompt_manager.get_system_prompt(f"{interview_type}_grading_feedback_prompt")
return [
{"role": "system", "content": system_prompt},
{"role": "user", "content": f"The original problem to solve: {problem_description}"},
{"role": "user", "content": "\n\n".join(transcript)},
{"role": "user", "content": "Grade the interview based on the transcript provided and give feedback."},
]
def end_interview(
self, problem_description: str, chat_history: List[Dict[str, str]], interview_type: str = "coding"
) -> Generator[str, None, None]:
"""
End the interview and get feedback from the LLM.
Args:
problem_description (str): The original problem description.
chat_history (List[Dict[str, str]]): The chat history.
interview_type (str): The type of interview. Defaults to "coding".
Yields:
str: Incrementally generated feedback.
"""
if len(chat_history) <= 2:
yield "No interview history available"
return
messages = self.end_interview_prepare_messages(problem_description, chat_history, interview_type)
feedback = ""
for text in self.get_text(messages):
feedback += text
yield feedback
|