File size: 1,959 Bytes
ff50e43 dac9a79 ff50e43 dac9a79 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
# test
import numpy as np
import albumentations as A
from src.utils import get_images_list, load_image, load_augmentations_config
def test_get_images_list():
images_list = get_images_list("images")
assert isinstance(images_list, list)
assert len(images_list) > 0
assert isinstance(images_list[0], str)
def test_load_image():
images_list = get_images_list("images")
for image_name in images_list:
image = load_image(image_name, path_to_folder="images", bgr2rgb=True)
assert len(image.shape) == 3, f"error in {image_name}"
assert image.shape[2] == 3, f"error in {image_name}"
assert image.max() <= 255, f"error in {image_name}"
assert image.min() >= 0, f"error in {image_name}"
def test_load_augmentations_config():
image = np.random.randint(0, 255, (100, 100, 3)).astype(np.uint8)
placeholder_params = {
"image_width": image.shape[1],
"image_height": image.shape[0],
"image_half_width": int(image.shape[1] / 2),
"image_half_height": int(image.shape[0] / 2),
}
augmentations = load_augmentations_config(
placeholder_params, path_to_config="configs/augmentations.json"
)
for transform_name in augmentations.keys():
if transform_name in ["CenterCrop", "RandomCrop"]:
param_values = {"p": 1.0, "height": 10, "width": 10}
elif transform_name in ["Crop"]:
param_values = {"p": 1.0, "x_max": 10, "y_max": 10}
else:
param_values = {"p": 1.0}
transform = getattr(A, transform_name)(**param_values)
transformed_image = transform(image=image)["image"]
assert len(transformed_image.shape) == 3, f"error in {str(transform)}"
assert transformed_image.shape[2] == 3, f"error in {str(transform)}"
assert transformed_image.max() <= 255, f"error in {str(transform)}"
assert transformed_image.min() >= 0, f"error in {str(transform)}"
|