demo-app / app.py
Icyud's picture
Update app.py
d705553 verified
raw
history blame
1.09 kB
import streamlit as st
from transformers import pipeline
base_model = "minhtt/vistral-7b-chat"
bnb_config = BitsAndBytesConfig(
load_in_4bit= True,
bnb_4bit_quant_type= "nf4",
bnb_4bit_compute_dtype= torch.bfloat16,
bnb_4bit_use_double_quant= False,
)
model = AutoModelForCausalLM.from_pretrained(
base_model,
load_in_4bit=True,
quantization_config=bnb_config,
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True,
)
model.config.use_cache = False # silence the warnings. Please re-enable for inference!
model.config.pretraining_tp = 1
model.gradient_checkpointing_enable()
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(base_model, trust_remote_code=True)
tokenizer.padding_side = 'right'
tokenizer.pad_token = tokenizer.eos_token
tokenizer.add_eos_token = True
tokenizer.bos_token, tokenizer.eos_token
pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=200)
text = st.text_erea("Đặt câu hỏi")
if text:
out = pipe(text)
st.text_erea(out)