Spaces:
Running
Running
mintheinwin
commited on
Commit
•
1283eb6
1
Parent(s):
fadd86a
update app
Browse files
app.py
CHANGED
@@ -1,8 +1,11 @@
|
|
1 |
-
from ultralytics import YOLO
|
2 |
-
from PIL import Image
|
3 |
import gradio as gr
|
4 |
from huggingface_hub import snapshot_download
|
|
|
5 |
import os
|
|
|
|
|
|
|
|
|
6 |
|
7 |
#public model path location
|
8 |
#MODEL_REPO_ID = "mintheinwin/3907578Y"
|
@@ -10,34 +13,98 @@ import os
|
|
10 |
#Organizations model path location
|
11 |
MODEL_REPO_ID = "ITI107-2024S2/3907578Y"
|
12 |
|
13 |
-
#
|
14 |
def load_model(repo_id):
|
15 |
download_dir = snapshot_download(repo_id)
|
16 |
-
|
17 |
-
|
18 |
-
print(path)
|
19 |
-
detection_model = YOLO(path, task='detect')
|
20 |
return detection_model
|
21 |
-
|
|
|
22 |
detection_model = load_model(MODEL_REPO_ID)
|
23 |
|
24 |
#Student ID
|
25 |
student_info = "Student Id: 3907578Y, Name: Min Thein Win"
|
26 |
|
27 |
-
#
|
28 |
-
def
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
out_pilimg = Image.fromarray(img_bgr[..., ::-1]) # RGB-order PIL image
|
33 |
return out_pilimg
|
34 |
-
|
35 |
-
#
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import snapshot_download
|
3 |
+
from ultralytics import YOLO
|
4 |
import os
|
5 |
+
from PIL import Image
|
6 |
+
import cv2
|
7 |
+
import numpy as np
|
8 |
+
import tempfile
|
9 |
|
10 |
#public model path location
|
11 |
#MODEL_REPO_ID = "mintheinwin/3907578Y"
|
|
|
13 |
#Organizations model path location
|
14 |
MODEL_REPO_ID = "ITI107-2024S2/3907578Y"
|
15 |
|
16 |
+
# Load model
|
17 |
def load_model(repo_id):
|
18 |
download_dir = snapshot_download(repo_id)
|
19 |
+
path = os.path.join(download_dir, "best_int8_openvino_model")
|
20 |
+
detection_model = YOLO(path, task="detect")
|
|
|
|
|
21 |
return detection_model
|
22 |
+
|
23 |
+
|
24 |
detection_model = load_model(MODEL_REPO_ID)
|
25 |
|
26 |
#Student ID
|
27 |
student_info = "Student Id: 3907578Y, Name: Min Thein Win"
|
28 |
|
29 |
+
#Prediction for images
|
30 |
+
def predict_image(pil_img):
|
31 |
+
result = detection_model.predict(pil_img, conf=0.5, iou=0.5)
|
32 |
+
img_bgr = result[0].plot() # Annotated image
|
33 |
+
out_pilimg = Image.fromarray(img_bgr[..., ::-1]) # Convert to RGB PIL image
|
|
|
34 |
return out_pilimg
|
35 |
+
|
36 |
+
#Prediction for videos
|
37 |
+
def predict_video(video):
|
38 |
+
cap = cv2.VideoCapture(video)
|
39 |
+
frames = []
|
40 |
+
temp_dir = tempfile.mkdtemp()
|
41 |
+
|
42 |
+
while cap.isOpened():
|
43 |
+
ret, frame = cap.read()
|
44 |
+
if not ret:
|
45 |
+
break
|
46 |
+
|
47 |
+
# Detection
|
48 |
+
result = detection_model.predict(frame, conf=0.5, iou=0.5)
|
49 |
+
annotated_frame = result[0].plot()
|
50 |
+
frames.append(annotated_frame)
|
51 |
+
|
52 |
+
cap.release()
|
53 |
+
|
54 |
+
# Save annotated video
|
55 |
+
height, width, _ = frames[0].shape
|
56 |
+
output_path = os.path.join(temp_dir, "annotated_video.mp4")
|
57 |
+
out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"mp4v"), 20, (width, height))
|
58 |
+
|
59 |
+
for frame in frames:
|
60 |
+
out.write(frame)
|
61 |
+
|
62 |
+
out.release()
|
63 |
+
return output_path
|
64 |
+
|
65 |
+
# Unified prediction function
|
66 |
+
def unified_predict(file):
|
67 |
+
if isinstance(file, Image.Image):
|
68 |
+
# If the input is a PIL Image, treat it as an image
|
69 |
+
return predict_image(file)
|
70 |
+
elif isinstance(file, str) and file.endswith(('.mp4', '.avi', '.mov')):
|
71 |
+
# If the input is a video file path, treat it as a video
|
72 |
+
return predict_video(file)
|
73 |
+
else:
|
74 |
+
raise ValueError("Unsupported file type. Please upload an image or a video.")
|
75 |
+
|
76 |
+
# UI Interface
|
77 |
+
with gr.Blocks() as interface:
|
78 |
+
gr.Markdown("# Wild Animal Detection (Tiger/Lion)")
|
79 |
+
gr.Markdown(student_info)
|
80 |
+
|
81 |
+
# Unified Section
|
82 |
+
with gr.Row():
|
83 |
+
with gr.Column():
|
84 |
+
gr.Markdown("### Upload an Image or Video:")
|
85 |
+
input_file = gr.File(label="Input File")
|
86 |
+
|
87 |
+
with gr.Column():
|
88 |
+
gr.Markdown("### Output Results:")
|
89 |
+
output_display = gr.Output(label="Output")
|
90 |
+
|
91 |
+
clear_btn= gr.Button("CLEAR")
|
92 |
+
submit_btn = gr.Button("SUBMIT")
|
93 |
+
|
94 |
+
def process_file(file):
|
95 |
+
if file.name.endswith((".jpg", ".jpeg", ".png")):
|
96 |
+
pil_image = Image.open(file.name)
|
97 |
+
return predict_image(pil_image)
|
98 |
+
elif file.name.endswith((".mp4", ".avi", ".mov")):
|
99 |
+
return predict_video(file.name)
|
100 |
+
else:
|
101 |
+
return "Unsupported file type. Please upload an image or a video."
|
102 |
+
|
103 |
+
def clear_all():
|
104 |
+
return None, ""
|
105 |
+
|
106 |
+
submit_btn.click(fn=process_file, inputs=input_file, outputs=output_display)
|
107 |
+
clear_btn.click(fn=clear_all, inputs=None, outputs=[input_file, output_display])
|
108 |
+
|
109 |
+
# Launch app
|
110 |
+
interface.launch(share=True)
|